## Appendix

## **Background Material**

Historically speaking, it is of course quite untrue that mathematics is free from contradiction; non-contradiction appears as a goal to be achieved, not as a God-given quality that has been granted us once for all.

Nicolas Bourbaki

## 1. SET THEORY

This section reviews some conventions about set theory which are used in this book, as well as some facts which will be referred to occasionally.

First, a remark about definitions: Any definition of a word or a phrase will have roughly the form

$$(1.1)$$
  $xxx \text{ if } @#&$%,$ 

where xxx is the word which is being defined and @#&\$% is its defining property. For example, the sentence "An integer n is positive if n > 0" defines the notion of a positive integer. In a definition, the word if means if and only if. So in the definition of the positive integers, all integers which don't satisfy the requirement n > 0 are ruled out.

The notation

$$\{s \in S \mid @#&\$\%\}$$

stands for the subset of S consisting of all elements s such that @#&\$% is true. Thus if  $\mathbb{Z}$  denotes the set of all integers, then  $\mathbb{N} = \{n \in \mathbb{Z} \mid n > 0\}$  describes  $\mathbb{N}$  as the set of positive integers or natural numbers.

Elements  $a_1, \ldots, a_n$  of a set are said to be *distinct* if no two of them are equal. A map  $\varphi$  from a set S to a set T is any function whose domain of definition is S and whose range is T. The words function and map are used synonymously. We require that a function be single-valued. This means that every element  $s \in S$  must have a uniquely determined image  $\varphi(s) \in T$ . The range T of  $\varphi$  is not required to be

the set of values of the function. By definition of a function, every image element  $\varphi(s)$  is contained in T, but we allow the possibility that some elements  $t \in T$  are not taken on by the function at all. We also take the domain and range of a function as part of its definition. If we restrict the domain to a subset, or if we extend the range, then the function obtained is considered to be different.

The domain and range of a map may also be described by the use of an arrow. Thus the notation  $\varphi: S \to T$  tells us that  $\varphi$  is a map from S to T. The statement that  $t = \varphi(s)$  may be described by a wiggly arrow:  $s \leadsto t$  means that the element  $s \in S$  is sent to  $t \in T$  by the map under consideration. For example, the map  $\varphi: \mathbb{Z} \to \mathbb{Z}$  such that  $\varphi(n) = 2n + 1$  is described by  $n \leadsto 2n + 1$ .

The *image* of the map  $\varphi$  is the subset of T of elements which have the form  $\varphi(s)$  for some  $s \in S$ . It will often be denoted by im  $\varphi$ , or by  $\varphi(S)$ :

(1.3) 
$$\operatorname{im} \varphi = \{t \in T \mid t = \varphi(s) \text{ for some } s \in S\}.$$

In case im  $\varphi$  is the whole range T, the map is said to be *surjective*. Thus  $\varphi$  is surjective if every  $t \in T$  has the form  $\varphi(s)$  for some  $s \in S$ .

The map  $\varphi$  is called *injective* if distinct elements  $s_1$ ,  $s_2$  of S have distinct images, that is, if  $s_1 \neq s_2$  implies that  $\varphi(s_1) \neq \varphi(s_2)$ . A map which is both injective and surjective is called a *bijective* map. A *permutation* of a set S is a bijective map from S to itself.

Let  $\varphi: S \to T$  and  $\psi: T \to S$  be two maps. Then  $\psi$  is called an *inverse function* of  $\varphi$  if both of the composed maps  $\varphi \circ \psi: T \to T$  and  $\psi \circ \varphi: S \to S$  are the identity maps, that is, if  $\varphi(\psi(t)) = t$  for all  $t \in T$  and  $\psi(\varphi(s)) = s$  for all  $s \in S$ . The inverse function is often denoted by  $\varphi^{-1}$ .

(1.4) **Proposition.** A map  $\varphi: S \to T$  has an inverse function if and only if it is bijective.

**Proof.** Assume that  $\varphi$  has an inverse function  $\psi$ , and let us show that  $\varphi$  is both surjective and injective. Let t be any element of T, and let  $s = \psi(t)$ . Then  $\varphi(s) = \varphi(\psi(t)) = t$ . So t is in the image of  $\varphi$ . This shows that  $\varphi$  is surjective. Next, let  $s_1, s_2$  be distinct elements of S, and let  $t_i = \varphi(s_i)$ . Then  $\psi(t_i) = s_i$ . So  $t_1, t_2$  have distinct images in S, which shows that they are distinct. Therefore  $\varphi$  is injective. Conversely, assume that  $\varphi$  is bijective. Then since  $\varphi$  is surjective, every element  $t \in T$  has the form  $t = \varphi(s)$  for some  $s \in S$ . Since  $\varphi$  is injective, there can be only one such element s. So we define  $\psi$  by the following rule:  $\psi(t)$  is the unique element  $s \in S$  such that  $\psi(s) = t$ . This map is the required inverse function.  $\square$ 

Let  $\varphi: S \to T$  be a map, and let U be a subset of T. The *inverse image* of U is defined to be the set

$$\varphi^{-1}(U) = \{s \in S \mid \varphi(s) \in U\}.$$

This set is defined whether or not  $\varphi$  has an inverse function. The notation  $\varphi^{-1}$ , as used here, is symbolic.

A set is called *finite* if it contains finitely many elements. If so, the number of its elements, sometimes called its *cardinality*, will be denoted by |S|. We will also

call this number the *order* of S. If S is infinite, we write  $|S| = \infty$ . The following theorem is quite elementary, but it is a very important principle.

- (1.6) **Theorem.** Let  $\varphi: S \to T$  be a map between finite sets.
  - (a) If  $\varphi$  is injective, then  $|S| \leq |T|$ .
  - (b) If  $\varphi$  is surjective, then  $|S| \ge |T|$ .
  - (c) If |S| = |T|, then  $\varphi$  is bijective if and only if it is either injective or surjective.  $\Box$

The contrapositive of part (a) is often called the *pigeonhole principle*: If |S| > |T|, then  $\varphi$  is not injective. For example, if there are 87 socks in 79 drawers, then some drawer contains at least two socks.

An infinite set S is called *countable* if there is a bijective map  $\varphi \colon \mathbb{N} \to S$  from the set of natural numbers to S. If there is no such map, then S is said to be *uncountable*.

## (1.7) **Proposition.** The set $\mathbb{R}$ of real numbers is uncountable.

**Proof.** This proof is often referred to as Cantor's diagonal argument. Let  $\varphi$ :  $\mathbb{N} \to \mathbb{R}$  be any map. We list the elements of the image of  $\varphi$  in the order  $\varphi(1)$ ,  $\varphi(2)$ ,  $\varphi(3)$ ,..., and we write each of these real numbers in decimal notation. For example, the list might begin as follows:

$$\varphi(1) = 8 \ 2 \ .3 \ 5 \ 4 \ 7 \ 0 \ 9 \ 8 \ 4 \ 5 \ 3 \ 4 \dots$$

$$\varphi(2) = 1 \ 2 \ 3 \ 9 \ 0 \ 3 \ 4 \ 5 \ 7 \ 0 \ 0 \dots$$

$$\varphi(3) = 5 \ .9 \ 0 \ 8 \ 4 \ 0 \ 5 \ 9 \ 8 \ 6 \ 7 \ 5 \dots$$

$$\varphi(4) = 1 \ 2 \ .8 \ 7 \ 4 \ 3 \ 5 \ 2 \ 6 \ 4 \ 4 \ 4 \ 4 \dots$$

$$\varphi(5) = 0 \ 0 \ 1 \ 4 \ 4 \ 1 \ 0 \ 0 \ 3 \ 4 \ 9 \dots$$

$$\vdots \qquad \vdots$$

We will now determine a real number which is not on the list. Consider the real number u whose decimal expansion consists of the underlined digits:  $u = 0.3 2 8 3 4 \dots$ . We form a new real number by changing each of these digits, say

$$v = .4 \ 5 \ 1 \ 4 \ 2 \dots$$

Notice that  $v \neq \varphi(1)$ , because the first digit, 4, of v is not equal to the corresponding digit, 3, of  $\varphi(1)$ . Also,  $v \neq \varphi(2)$ , because the second digit, 5, of v is not equal to the corresponding digit of  $\varphi(2)$ . Similarly,  $v \neq \varphi(n)$  for all n. This shows that  $\varphi$  is not surjective, which completes the proof, except for one point.

Some real numbers have two decimal expansions: .99999... is equal to 1.00000..., for example. This creates a problem with our argument. We have to choose v so that infinitely many of its digits are different from 9 and 0. The easiest way is to avoid these digits altogether.  $\Box$