RIGID MOTIONS AND ORTHOGONAL MATRICES

I am including the pages from Artin’s Algebra (1st edition, pages 126-128) where he
shows that a rigid motion fixing the origin is given by multiplication by an orthogonal
matrix. An orthogonal matrix is a matrix A satisfying ATA = 1. The proof in the second
edition (pages 156-157) is brilliant, short, but also tricky, so I felt that you might benefit
from another proof.

(5.13) Proposition. The following conditions on a real n X n matrix A are equiva-
lent:

(a) A is orthogonal.

(b) Multiplication by A preserves dot product, that is, (AX - AY) = (x - Y) for all
column vectors X, Y.

(¢) The columns of A are mutually orthogonal unit vectors.

A basis consisting of mutually orthogonal unit vectors is called an orthonormal
basis. An orthogonal matrix is one whose columns form an orthonormal basis.

Left muitiplication by an orthogonal matrix is also called an orthogonal opera-
tor. Thus the orthogonal operators on R" are the ones which preserve dot product.

Proof of Proposition (5.13). We write (X - ¥Y) = X'v. If A is orthogonal, then
A'A =1, so
(X - v) = X'y = X'A'AY = (AX)'(AY) = (AX - AY).

Conversely, suppose that X'Y = X'A'AY for all X and Y. We rewrite this equality as
X'BY = 0, where B = I — A'A. For any matrix B,

(5.14) eitBej = by.

So if X'BY = 0 for all X, Y, then ¢!Be; = b; = 0 for all i,j, and B = 0. Therefore
1 = A'A. This proves the equivalence of (a) and (b). To prove that (a) and (c) are
equivalent, let A; denote the jth column of the matrix A. The (i,j) entry of the
product matrix A'A is (A; - Aj). Thus A'A = I if and only if (4; - A;)) = 1 for all i,



and (4; - A4;)) = 0 forall i # j, which is to say that the columns have length 1 and are
orthogonal. o

The geometric meaning of multiplication by an orthogonal matrix can be ex-
plained in terms of rigid motions. A rigid motion or isometry of R" is a map
m: R"——> R” which is distance preserving; that is, it is a map satisfying the follow-
ing condition: If X, ¥ are points of R", then the distance from X to Y is equal to the
distance from m(X) to m(Y):

(5.15) Im(x) — m@)| = |x — .

Such a rigid motion carries a triangle to a congruent triangle, and therefore it pre-
serves angles and shapes in general.

Note that the composition of two rigid motions is a rigid motion, and that the
inverse of a rigid motion is a rigid motion. Therefore the rigid motions of R” form a
group M,, with composition of operations as its law of composition. This group is
called the group of motions.

(5.16) Proposition. Let m be a map R"—— R". The following conditions on m
are equivalent:

(a) m is a rigid motion which fixes the origin.
(b) m preserves dot product; that is, for all X,¥ € R"*, (m(X) - m(y)) = (x - Y).
(c) m is left multiplication by an orthogonal matrix.

(5.17) Corollary. A rigid motion which fixes the origin is a linear operator.
This follows from the equivalence of (a) and (c).

Proof of Proposition (5.16). We will use the shorthand ' to denote the map m, writ-
ing m(x) = X'. Suppose that m is a rigid motion fixing 0. With the shorthand nota-
tion, the statement (5.15) that m preserves distance reads

(5.18) x' -y X -Y)y=xx—-Y-X~-Y)

for all vectors X, Y. Setting ¥ = O shows that (X’ - X') = (X - X) for all X. We ex-
pand both sides of (5.18) and cancel (X - X) and (Y - Y), obtaining (X' - ¥') =
(X - Y). This shows that m preserves dot product, hence that (a) implies (b).

To prove that (b) implies (c), we note that the only map which preserves dot
product and which also fixes each of the basis vectors e; is the identity. For, if m
preserves dot product, then (X - ¢j)) = (X' - ¢) for any X. If ¢/ = ¢; as well, then

=X =X ¢)= X' - e) = x'

for all j. Hence X = X', and m is the identity.

Now suppose that m preserves dot product. Then the images ei’,...,e," of the
standard basis vectors are orthonormal: (¢;' - ¢;/) = 1 and (e’ - ¢j') = 0 if i # j.
Let B’ = (e/',...,e,'), and let A = [B']. According to Proposition (5.13), A is an or-



thogonal matrix. Since the orthogonal matrices form a group, A™' is also orthogonal.
This being so, multiplication by A™" preserves dot product too. So the composed mo-
tion A™'m preserves dot product, and it fixes each of the basis vectors ¢;. Therefore
A”'m is the identity map. This shows that m is left multiplication by A, as required.

Finally, if m is a linear operator whose matrix A is orthogonal, then
X' — Y = (X — Y) because m is linear, and |[X' — ¥'| = |(x — ¥)'| = |x — ¥| by
(5.13b). So m is a rigid motion. Since a linear operator also fixes 0, this shows that
(c) implies (a). o

One class of rigid motions which do not fix the origin, and which are therefore
not linear operators, is the translations. Given any fixed vector b = (by,..., b,)' in
R", translation by b is the map

x1+ by
(5.19) LX)y =Xx+ b=
Xn+ bn

This map is a rigid motion because #%(X) — #(Y) = (X + b) — (¥ + b) = X — ¥,
and hence |(X) — (V)| = |X — ¥|.

(5.20) Proposition. Every rigid motion m is the composition of an orthogonal lin-
ear operator and a translation. In other words, it has the form m(X) = AX + b for
some orthogonal matrix A and some vector b.

Proof. Let b = m(0). Then t-5(b) = 0, so the composed operation ¢-,m is a
rigid motion which fixes the origin: ¢-,(m(0)) = 0. According to Proposition (5.16),
t-pm is left multiplication by an orthogonal matrix A: t_p,m(X) = AX. Applying & to
both sides of this equation, we find m(X) = AX + b.

Note that both the vector b and the matrix A are uniquely determined by m, be-
cause b = m(0) and A is the operator - ,m. o



