
MODERN ALGEBRA 1: CLASSIFICATION OF GROUPS OF ORDER UP TO 30
(WITH SOME EXCEPTIONS)

We classify up to isomorphism the groups of order up to 30, excluding the orders 8, 16,
18, 24, and 27. We begin with a series of lemmas.

Lemma 1. Let p be a prime. Then Z×p is cyclic.

Proof. The result is true in general, but the proof I know uses some tools beyond what we
have done. We use it only for p ≤ 13. It suffices to exhibit an element of Z×p of order
(p− 1). Here is a table for such elements for p ≤ 13:

p 2 3 5 7 11 13
1 2 2 3 2 2 .

�

Lemma 2. Let φ, ψ : H → Aut N be homomorphisms and α : H → H an automorphism such
that φ = ψ ◦ α. Then we have an isomorphism N oφ H ∼= N oψ H.

Proof. Consider the function f : N oφ H → N oψ H given by

f (n, h) = (n, α(h)).

We show that f is an isomorphism. Since α is a bijection, so is f . It remains to check that
f is a homomorphism.

f ((n1, h1) · (n2, h2)) = f (n1φh1(n2), h1h2)

= (n1φh1(n2), α(h1h2)).

On the other hand,

f (n1, h1) · f (n2, h2) = (n1, α(h1)) · (n2, α(h2))

= (n1ψα(h1)
(n2), α(h1)α(h2))

= (n1φh1(n2), α(h1h2)).

We thus get f ((n1, h1) · (n2, h2)) = f (n1, h1) · f (n2, h2). �

Lemma 3. Let N and H be subgroups of G with N / G. Then NH is a subgroup of G.

Proof. We need to check that NH contains the identity, and is closed under products and
inverses. Since e = e · e, we get e ∈ NH. We have

n1h1 · n2h2 = (n1h1n2h−1
1 )h1h2,

and since N is normal, h1n2h−1
1 ∈ N. Therefore, the product of n1h1 and n2h2 is of the

form nh where n = n1h1n2h−1
1 ∈ N and h = h1h2 ∈ H. Similarly,

(n1h1)
−1 = h−1

1 n−1
1 = h−1

1 n−1
1 h1h−1

1 ,

which is of the form nh where n = h−1
1 n−1

1 h1 ∈ N and h = h−1
1 ∈ H. �
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Lemma 4. If N and H are subgroups of G such that N ∩ H = {e} and |N||H| = G, then
NH = G. In particular, if gcd(|N|, |H|) = 1 and |N||H| = G, then NH = G.

Proof. Since N ∩ H = {e}, we have n1h1 = n2h2 if and only if n1 = n2 and h1 = h2. That
is, the products nh, for n ∈ N and h ∈ H are all distinct. Since there are |N||H| of such
products, and G has |N||H| elements, we have NH = G. For the second statement, note
that N ∩ H is a subgroup of both N and H. By Langrange’s theorem, its order divides
both |N| and |H|. If |N| and |H| are coprime, then we must have N ∩ H = {e}. �

We now have the tools to begin our classification.

Proposition 5. Let G be a group of order p, then G ∼= Z/pZ.

Proof. In this case, G is the cyclic group generated by any non-identity element. �

Proposition 6. Let G be a group of order p2. Then G ∼= Zp2 or G ∼= Zp × Zp.

Proof. We know that all groups of order p2 are abelian. By the classification of abelian
groups, the only two possibilities are those listed above. �

Proposition 7. Let G be a group of order pq where p < q are primes.
(1) If p does not divide q− 1, then G ∼= Zp × Zq. Thus, there is only one group of order n up

to isomorphism.
(2) If p divides q− 1, then either G ∼= Zp× Zq, or G ∼= Zp oφ Zq, where φ : Zp → Aut(Zq)

is any non-trivial homomorphism. Thus, there are two groups of order n up to isomor-
phism.

Proof. By the first Sylow theorem, G has a subgroup of order q. By the third Sylow theo-
rem, the number of such subgroups divides p and is congruent to 1 modulo q. The only
such number is 1, and hence there is a unique such subgroup. Call it N. Since the con-
jugates of N are also subgroups of order q, they must equal N. Therefore, N is a normal
subgroup of G.

By the first Sylow theorem, G has a subgroup of order p. By Lemma 4, N and H are
complementary. By Proposition 5, N ∼= Zq and H ∼= Zp. Therefore,

G ∼= Zq oφ Zp

for some φ : Zp → Aut Zq. Recall that Aut Zq = Z×q . By Lemma 1, we have an isomor-
phism Z×q ∼= Zq−1. We now make two cases.
Case 1 (p does not divide q − 1): In this case, p and q − 1 are coprime, and hence the

only homomorphism φ : Zp → Aut Zq ∼= Zq−1 is the trivial one. Therefore, G ∼=
Zq × Zp.

Case 2 (p divides q − 1): In this case, let (q − 1) = mp. A homomorphism Zp → Zq−1
must send 1 to an element x such that px ≡ 0 (mod (q − 1)). Thus, we get p
different homomorphism φi given by φi : 1 7→ im for i = 0, . . . , (p − 1). Then
G ∼= Zq oφi Zp for some φi. However, for every 1 ≤ i ≤ p − 1, we have an
automorphism αi : Zp → Zp given by multiplication by i, and φi = φ1 ◦ αi. There-
fore, by Lemma 2, the semidirect products correspding to φ1, . . . , φp−1 are in fact
isomorphic. We thus get G ∼= Zq × Zp (corresponding to φ0) or G ∼= Zq oφ Zp
(corresponding to any non-trivial φ). Since Zq × Zp is abelian, while Zq oφ Zp is
not, they are not isomorphic.
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Proposition 5, Proposition 6, and Proposition 7 cover the orders 2, 3, 4, 5, 6, 7, 9, 10, 11,
13, 14, 15, 17, 19, 21, 22, 23, 25, 26, and 29. We are thus left with orders 8, 12, 16, 18, 20, 24,
27, 28, and 30.

Proposition 8. There are five groups of order 12 up to isomorphism: Z12, Z2× Z6, (Z2× Z2)o
Z3, Z3 o Z4, and Z3 o (Z2 × Z2).

Proof. Let G be a group of order 12. We first show that G has a normal subgroup of
order 3 or 4. By the third Sylow theorem, G has either one or four 3-Sylow subgroups.
Suppose the 3-Sylow subgroup is not normal. Then there are four 3-Sylow subgroups.
Since any non-identity element of a 3-element group generates the group, two distinct
3-Sylow subgroups cannot share a non-identity element. We thus get 4 · 2 = 8 elements
in G of order 3. A 2-Sylow subgroup of G has order 4 and it cannot contain any of the 8
elements of order 3. It follows that there can be only one 2-Sylow subgroup. In particular,
it must be normal.

We now make cases.
Case 1 (2-Sylow is normal): Let N be a 2-Sylow subgroup. By Lemma 4 a 3-Sylow sub-

group H is a complementary group, and hence G ∼= N o H. We have H ∼= Z3. For
N, we make two subcases.
Case 1 (a) (N ∼= Z4): Then G ∼= Z4 oφ Z3. Since Aut Z4 = Z×4

∼= Z2 and there are
no nontrivial automorphisms from Z3 → Z2, we have G ∼= Z4 × Z3

∼=
Z12.

Case 1 (b) (N ∼= Z2 × Z2): Then G ∼= Z4 oφ Z3 for some φ : Z3 → Aut(Z2 × Z2).
The homomorphism φ is determined by φ(1). An automorphism of
Z2 × Z2 must fix (0, 0) and permute the three other elements. Further-
more, φ(1) must satisfy φ(1)3 = id. Therefore, either φ(1) = id (in
which case φ is trivial) or φ(1) acts as a 3-cycle on the three non-identity
elements. It is easy to check that both such 3-cycles do give automor-
phisms of Z2 × Z2. Since there are only two such 3-cycles, we have at
most two possibilities for φ, say φ1 and φ2. However, if we denote by
α : Z3 → Z3 the automorphism x 7→ −x, then φ1 ◦ α = φ2. Therefore,
by Lemma 2, they give isomorphic semidirect products. We thus get
G ∼= Z2 × Z2 × Z3 or (Z2 × Z2)o Z3 (nontrivial).

Case 2 (3-Sylow is normal): Let N be the 3-Sylow subgroup. Then N ∼= Z3. Let H be a
2-Sylow subgroup. By Lemma 4, N and H are complementary, and hence G ∼=
Z3 o H. Again we have two cases.
Case 2 (a) (H ∼= Z4): Then G ∼= Z3 oφ Z4. There are two homomorphisms φ : Z4 →

Aut Z3
∼= Z2, one trivial and one non-trivial. This gives two semidirect

products Z3 × Z4 and Z3 o Z4 (nontrivial).
Case 2 (b) (H ∼= Z2 × Z2): Then G ∼= Z3 o (Z2 × Z2). There are four homomor-

phisms Z2 × Z2 → Aut Z3
∼= Z2, one trivial and three non-trivial. The

three non-trivial ones are related to each other by composing with au-
tomorphisms of Z2 × Z2. Therefore, by Lemma 2, the semidirect prod-
ucts they give are isomorphic to each other. We thus get two semidirect
products Z3 × Z2 × Z2 and Z3 o (Z2 × Z2) (nontrivial).
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Remark 9. We may choose a more friendly list of 5 groups of order 12: Z12, Z2 × Z6, D6,
S3 × Z2, and Z3 o Z4. Let us check that no two of these are isomorphic. The first two
are abelian while the last three are not. The first is cyclic while the second is not. The
third has 6 elements of order 2 while the fourth has 4. The last one has Z4 as its 2-Sylow
subgroup while the third and the fourth have Z2×Z2. Combining these observations, we
see that no two are isomorphic.

Proposition 10. There are five groups of order 20 up to isomorphism: Z20, Z2 × Z10, Z5 o1 Z4,
Z5 o2 Z4, and Z5 o (Z2 × Z2).

Proof. Let G be a group of order 20. The Sylow theorems imply that G has a normal
subgroup N of order 5 and a complementary subgroup H of order 4. Then G ∼= N o H.
There are two cases.
Case 1 (H ∼= Z4): Then G ∼= Z5 oφ Z4. There are four homomorphisms Z4 → Aut Z5

∼= Z4
corresponding to 1 7→ 0, 1, 2, or 3. The two, 1 7→ 1 and 1 7→ 3, are related by an
automorphism α of Z4 given by α : x → −x. Therefore, we get three semidirect
products Z5×Z4, Z5 o1 Z4, and Z5 o2 Z4. The last two are indeed non-isomorphic.
The center of Z5 o1 Z4 is trivial, whereas the center of Z5 o2 Z4 has a non-identity
element, namely the 2 ∈ Z4.

Case 2 (H ∼= Z2 × Z2): Then G ∼= Z5 oφ Z2 × Z2. There are four homomorphisms Z2 ×
Z2 → Aut Z5

∼= Z4, one trivial and three non-trivial. The three non-trivial ones
are related to each other by automorphisms of Z2×Z2. Hence, in this case, we get
two semidirect products Z5 × Z2 × Z2 and Z5 o (Z2 × Z2) (nontrivial).

�

Remark 11. A more friendly list is: Z20, Z2 × Z10, D10, and two non-trivial semidirect
products Z5 o1 Z4 and Z5 o2 Z4.

Proposition 12. There are four groups of order 28 up to isomorphism: Z28, Z2 × Z14, Z7 o Z4,
and Z7 o (Z2 × Z2).

Proof. The analysis here is similar to the case of order 20, but easier. Let G be a group of
order 20. The Sylow theorems imply that G has a normal subgroup N of order 7 and a
complementary subgroup H of order 4. Then G ∼= N o H. There are two cases.
Case 1 (H ∼= Z4): Then G ∼= Z7 oφ Z4. There are two homomorphisms Z4 → Aut Z7

∼= Z6
corresponding to 1 7→ 0 or 3. Therefore, we get two semidirect products Z7 × Z4
and Z7 o Z4 (nontrivial).

Case 2 (H ∼= Z2 × Z2): Then G ∼= Z7 oφ Z2 × Z2. There are four homomorphisms Z2 ×
Z2 → Aut Z7

∼= Z6, one trivial and three non-trivial. The three non-trivial ones
are related to each other by automorphisms of Z2×Z2. Hence, in this case, we get
two semidirect products Z7 × Z2 × Z2 and Z7 o (Z2 × Z2) (nontrivial).

�

Remark 13. A more friendly list is: Z28, Z2 × Z14, D14, and Z7 o Z4.

Proposition 14. There are four groups of order 30 up to isomorphism; all four are semidirect
products Z15 oφ Z2.
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Proof. Let G be of order 30. We claim that G has a normal subgroup of order 3 or order 5.
Note that the number of 3-Sylow subgroups is either 1 or 10 and the number of 5-Sylow
subgroups is either 1 or 6. If the 3-Sylow is not normal, then we get 10 · 2 = 20 elements
in G of order 3. If the 5-Sylow is not normal, then we get 4 · 6 = 24 elements in G of order
5. Clearly, both possibilities cannot occur at the same time.

Suppose the 3-Sylow subgroup N is normal. Let H be a 5-Sylow subgroup. Then N′ =
NH is a subgroup of order 15. Likewise, if the 5-Sylow subgroup N is normal. Let H be
a 3-Sylow subgroup. Then N′ = NH is a subgroup of order 15. In either case, we get
a subgroup of G of order 15, which must be normal, since it has index two. Let H′ be a
2-Sylow subgroup. Then H′ is complementary to N′. By the classification of groups of
order 15, we get N′ ∼= Z15. We know that H′ ∼= Z2. Thus G ∼= Z15 oφ Z2. There are four
homomorphisms φ : Z2 → Aut(Z15) = Z×15 corresponding to 1 7→ 1, 4, 11, or 14. We thus
get at most four groups of order 30 up to isomorphism.

On the other hand, Z30, D15, S3 × Z5, and D5 × Z3 are four pairwise non-isomorphic
groups of order 30. To see that they are pairwise non-isomorphic, we can count the num-
ber of elements of order 2 in each one; these numbers are 1, 15, 3, and 5, respectively.
Hence these are the only four groups of order 30, up to isomorphism. �

Remark 15. A more friendly list is: Z30, D15, S3 × Z5, and D5 × Z3.
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