Modern Algebra 1: Midterm 2

November 11, 2013

Answer the questions in the space provided.

There are 5 questions. There is an additional bonus question at the end. Attempt it
only if you have enough time.

Give concise but adequate reasoning. You may use any statement from class or
textbook without proof, but you must clearly state what you are using.

At the end, there are some blank pages for scratch work. You may detach them.

Name:

Question | Points | Score
1 10
2 10
3 10
4 10
5 10
Total: 50




(a) (4 points) State the definition of a normal subgroup.

Solution: A subgroup H C G is called a normal subgroup if gHg~! = H for
allg € G.
Equivalently, a subgroup H C G is called a normal subgroup if gH = Hg for
allg € G.

(b) (3 points) Give an example of a normal subgroup of S4 other than {e} or Ss.
Explain why your example is a normal subgroup.

Solution: Consider the alternating group A4 consisting of permutations in
S4 with sign +1. Then Ay is a normal subgroup of S4 because it is the kernel
of the homomorphism sgn : S5 — {£1}.

Also, the set {id, (12)(34), (14)(23), (13)(24) } is a normal subgroup of S4, be-
ing the kernel of a homomorphism S4 — Ss.

(c) (3 points) Give an example of a subgroup of S that is not a normal subgroup.
Explain why your example is not a normal subgroup.

Solution: Consider the two element subgroup H = {id, (12)}. Taking ¢ =
(13), we get ¢(12)¢~! = (23) ¢ H. So H is not a normal subgroup.




2. (10 points) Let G be the subgroup of GL,(R) defined by

a b
G_{(O c> |a,b,c€R,aC7éO}.

Let H C G be the subgroup defined by a = ¢ = 1. Prove that H is a normal subgroup
of G and identify G/H.

Solution: Define a function ¢: G — R* x R* by

o (5 1) = @o

Since the matrix entries 4 and c can be any nonzero real numbers, ¢ is surjective.

Let us check that ¢ is a homomorphism. Let
([ m by _ (a2 by
Ml—(o Cl),al’lsz—(O Cz)'

. aidan a1b2+b1c2
MM, = ( 0 e >

Then

Therefore, we get

¢(M1Ma) = (m1a2,c102) = Pp(M1)p(Ma).

Hence ¢ is a homomorphism.

Also, ¢ <g g) = (1,1) ifand only if a = ¢ = 1. So, ker¢ = H.

Since the kernel of a homomorphism is a normal subgroup, we deduce that H is
a normal subgroup of G.

By the first isomorphism theorem, we get

G/H =G/ kerp =im¢ = R* x R*.




3. (10 points) Let G and H be finite groups whose orders are relatively prime (that is,
gcd (|G|, |H|) = 1). Show that the only homomorphism ¢: G — H is the trivial
homomorphism: ¢(g) = eforall g € G.

Solution: Let ¢: G — H be a homomorphism. Then im ¢ is a subgroup of H. By
Lagrange’s theorem, |im ¢| divides |H]|.

By the first isomorphism theorem, we have
G/ ker ¢ =im¢.

In particular, |G| = | ker¢||im ¢|. So, | im ¢| also divides |G|.

Since gcd(|G|,|H|) = 1, and |im ¢| divides both |G| and |H|, we conclude that
|im¢| = 1. Since e € im ¢, we must have im ¢ = {e}. Therefore ¢(g) = e for all
g €G.




4. Let G be the group of isometries of the infinite pattern

RAVAVAVAVAVAVAVAVAV,

(a) (5 points) Find the point group of G.

Solution: Recall that the point group G of G is the image of G under the
homomorphism
tiA— A

from the group of all isometries to the group O; of isometries fixing the origin.
Observe that G contains a reflection, namely the reflection through the verti-
cal line through any crest or trough. Therefore G contains the reflection in the
Y-axis.

Note that G contains a rotation by 7t (about the midpoint between a crest and
a trough). Hence G contains the rotation by 7t about the origin.

It is clear that G cannot contain a rotation by a (positive) angle smaller than 7t.
From what we proved in class, G is generated by the reflection in the Y-axis
and rotation by 7r. This group is D, given by

G= D, = {id/rX/ T’y,Pn},

where 7, is the rotation in the x-axis, r, is the rotation in the Y-axis, and p,
the rotation by 7t about the origin.

We can also see directly that G contains the reflection in the X-axis by observ-
ing that G contains a glide along the X-axis.

Alternatively, we can get G without using the above statement from class as
follows. Suppose t; A is an isometry of the pattern, where A € O,. Note that
t,A must send the X-axis to the X-axis. Since t, sends a line to a parallel line,
A must send the X-axis to a horizontal line. But A preserves the origin. So
A must send the X-axis to itself. By orthogonality, A must send the Y-axis to
the Y-axis. Since A is orthogonal and preserves the two axes, it can only be

one of
10 -1 0 1 0 -1 0
0 1)’\0 1/)’\0 —-1)’\ 0 -1)/°

Now it is easy to check that all four possibilities are present (they come from
the identity, a vertical reflection, a horizontal glide, and a rotation by 7 of the
original pattern). Thus,

o) (@)l 56 A}
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(b) (5 points) Let T be the translation by one wave-length. M/

Find the number of subgroups of G containing T.

Solution: Any subgroup of G containing T must contain the group (7) gen-
erated by 7. By the definition of the point group G, we have a surjective
homomorphism

¢: G — G,

whose kernel consists of the translations in G. But the translations in G are
precisely the elements of (7). So we get

GG/kerp =G/(1).

By the correspondence theorem for subgroups, the subgroups of G contain-
ing (7) are in bijection with the subgroups of G. But G is isomorphic to the
Klein four group, which has 5 subgroups: {id}, {id,r.}, {id,r,}, {id, px},
and {id, r, Ty, pr }. Hence there are five subgroups of G containing .




5. Let G be the group of orientation preserv-
ing isometries of a molecule of SFs (sulfur
hexafluoride). In coordinates, the central
S atom is (0,0,0) and the six F atoms are
(£1,0,0), (0,£1,0) and (0,0, +£1).

(a) (5 points) Find the order of G.

Solution: Consider the action of G on the set of F atoms. All F atoms form
one orbit. The stabilizer of an F atom contains four elements, namely the
four rotations about the line joining that atom to S by angles 0, /2, 7t and
37/2. Remember that since we are only considering orientation preserving
isometries, we must not count reflections.

By the orbit-stabilizer formula, we get

G| = |OF||GE| = 6 4 = 24.




(b) (5 points) Show that there is a surjective homomorphism G — Ss.

Solution: Let S = {X,Y,Z} be the set of the three coordinate axes. See that
any isometry in G must take an axis to another axis. We thus get an action of G
on S. Since S contains three elements, such an action gives a homomorphism

¢: G — Ss.

We now check that ¢ is surjective. Consider the element ¢ € G which is the
rotation by 7/2 about the positive Z-axis. Then ¢(g) fixes the Z axis, but
switches the X and Y axes. In other words, ¢(g) = (XY). Similarly, by taking
h which is the rotation by 7r/2 about the positive Y axis, we get ¢(h) = (XZ).
Therefore, both (XY) and (XZ) are in im ¢. Since any permutation of X, Y,
Z can be written as a product of (XY) and (XZ), and im ¢ is closed under
products, we get im ¢ = S3. That is, ¢ is surjective.




(c) (3 points (bonus)) Identity G.

Solution: G = §,.

To see why, we first find a homomorphism G — S4. Such a homomorphism
is equivalent to an action of G on a set with four elements. What set-of-four
can we see in the picture? We have 8 octants, given by the 8 possible sign
patterns of X, Y, and Z, namely (+,+,+), (+, +, —), etc, and we see that G
must act on the set of octants. But 8 is too many—we want 4.

Now we see that if an isometry sends an octant O to an octant O, then it must
send the octant opposite to O to the octant opposite to O’ (the opposite octant
is obtained by switching all three signs). We can thus pair the 8 octants into 4
pairs of opposite octants. Setting

S = {Pairs of opposite octants},
we get an action of G on S, and thus a homomorphism
¢: G — S;4.

Since both sides have the same number of elements, either surjectivity or in-
jectivity of ¢ implies that it is an isomorphism. I'll leave it to you to check
this.
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