ANALYSIS AND OPTIMIZATION: MIDTERM 2 PRACTICE PROBLEMS SOLUTIONS

SPRING 2016

PRACTICE PROBLEM SOLUTIONS
At times, I have only written the final answer or only sketched the solution. Let me know if
something is unclear. I will add more explanation.

(1) Write the definition of a convex function. Let f(X) and g(X) be two convex functions
on R". Using the definition, show that the function h(X) defined by

h(x) = max(f (X), g(x))
is also convex.
Solution. A function h is convex if for every ¥ and ¥ in the domain and A in [0, 1], we
have
AR(X) + (1 = Ah(Y) = h(AX + (1 - 2)¥).
Let us show that h = max(f, g) is convex by verifying the above inequality. Since
h(X) = f(X) and h(y) = f(¥), we have

AR(X) + (1= Dh(y) 2 Af (X) + (1 = A)f (V).

Since f is convex, we have

AfE)+(A-D)fF) 2 f(AX+ (1= 21)y).
Combining the two inequalities gives

AR(X) + (1 = Ah(Y) = f(AX + (1 = A)Y).
Similarly we get

AR(X) + (1 = Ah(Y) = g(AX + (1 = A)y).
Combining the last two inequalities gives

AR(X) 4+ (1 — Dh(Y) = max(f (AX + (1 — 4)¥), g(AxX + (1 — A)¥)),

which is the same as

AR(X) 4+ (1 = A)h(Y) = h(AX + (1 = 1)¥).

(2) Use Jensen’s inequality to prove that for positive real numbers x4, ..., x,, we have

3/x§’+---+x§>x1+---+xn
n - n ’

Solution. Use Jensen’s inequality for f(x) = x® (which is convex for x > 0) with all
A’i - 1/n. |:|
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(3) Find the global minimum and maximum of the function f(x,y) = 2x® + 4y> on the
set S = {x? + y* < 1} by the following outline.
(a) Show that the maximum and the minimum exists.
Solution. f is a continuous function on a compact set S, so the max/min exist by
the maximum theorem. 0J
(b) Using the gradient, find the possible points where the max/min could be achieved
on the interior {x? + y? < 1}.
Solution. In the interior, the max/min can only be achieved when the gradient is
equal to zero. The gradient is zero only at (x,y) = (0,0). O
(c) Using Lagrange multipliers, find the possible points where the max/min could be
achieved on the boundary {x2 + y? = 1}.
Solution. The Lagrange multiplier problem is

6x% = 2Ax
12y% =22y
x*+y*=1

The solutions are (x, y) = (0,£1),(£1,0),(2/+/5,1/v/5),(=2/+/5,—-1/+/5). O
(d) Check all the possibilities.
Solution. The max is at (0,1) and min at (0, —1). O

(4) Let A be the matrix

2 -1 0
A=1-1 2 -1
0o -1 2

(a) Write down the quadratic form Q(x, y,z) associated with A.
Solution.

Q(x,y,2) =2x*+2y*+22*> — 2xy — 2yz

OJ

(b) Show that the function f (x, y,z) = e?%¥?) is strictly convex.
Solution. First, Q is strictly convex because the leading principal minors are pos-
itive. Now e2*%?) is the composition of a strictly convex function with a strictly
increasing strictly convex function. O

(5) Check if the following equation defines z as a function z = g(x, y) in a neighborhood
of (0,0,1). If it does, find g—i and 2—§ at (0,0,1).

P*+y*+22—xyz—1=0.
(6) The same question at (1,0, 0) for the equation

ef —z>—x*—y?*=0.
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(7) Consider the system of equations
1+(x+yu—2+uw)!*=0
2u— (14 xy)et™ D=0,
Show that it defines u and v as functions of x and y near the point (x,y,u,v) =

(1,1,1,0). Find g—z, %, %, s—; at this point.

Solution. The three problems above are applications of the implicit function theorem

and the equation
JF vy JF
oy J\ox)  \ox )’

where F(X,Y) = 0 is the constraint equation and where the goal is to write Y as a
function of X. By the implicit function theorem, this is possible if the m x m matrix

(3—5) is invertible.

For example, denote the two equations in the last problem by f; and f,. Then we
get

9(f1,£2) o x+y-Q+v)2+u) —2+wW'In(2+4u)

a(u, V) (1’1,1’0) 2 - (1 + xy)(x - 1)eu(x_1) 0 (1,1,1,0)

_ (1 —-3In3
S \2 0 ’

which is invertible. Therefore, it is possible to write u and v as functions of x and y
around (1,1, 1,0). To find the partials, solve

(1 —31n3) (au/ax au/ay) __( u u )
2 0 dv/dx 0Ov/dy —u(1 + xy)e ™1 — yeutr=h)  —xeulx—1) (1,1,1,0)

1 —-3In3)\ (du/dx Ju/dy)\ _ 1 1
2 0 ov/ox adv/dy)  \-3 -1)°

(8) Write down a function on R? with a critical point at (0,0) which is neither a local
minimum nor a local maximum.

O

Solution. The easiest is to write down an indefinite quadratic form like x2 — y2. U

. . . . .. (21
(9) Write down a function whose gradient at (0,0) is (1, 3) and whose Hessian is (1 8)'

Solution.

1
x+3y+ 5(23(2 +2xy +8y?)

(10) Consider the matrix

S
Il
NN O
o N
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(1D

(12)

(13)

(14)

Find an orthogonal matrix P such that PTAP is diagonal.
Solution. The columns of P will be the unit eigenvectors of A. O

State the spectral theorem.

Solution. For every symmetric matrix A, there exists an orthogonal matrix P such that
PTAP is diagonal.

You may also state it using eigenvectors — every symmetric matrix has an orthogonal
basis of eigenvectors. ]

Let f(x,y,2z) = sin(x + 2y)e*™”. Find the gradient and the Hessian of f. Write the
second order Taylor approximation for f at (0,0,0).

Consider the function
flx,y,2)=x*>+y*+32° —xy +2xz + yz.

Find all critical points and use the second derivative test to determine if each one is a
local minimum, local maximum, or neither (or say that the test cannot determine the
answer).

Suppose a differentiable convex function f on R" has a global maximum at a point .
Show that f must be a constant function.

Solution. Since f is convex, the graph of f lies above the tangent (hyper)plane at
any point on the graph. But the tangent (hyper)plane at p is horizontal (since p is a
maximum), and the graph of f cannot lie strictly above this hyperplane (since p is a
maximum). So the graph must be this (hyper)plane. In other words, f is constant.

A less wordy and more math-y (and rigorous) way to write the above is as follows.
Since f is convex, we have the inequality

f&E) 2 f(B)+Vf(p) (X —P).

Since p is a maximum, Vf(p) = 0, so we get

&)= f(B)

But since p is a maximum, we cannot have strict inequality, so we get
f&x)=f(P)

for all ¥. So f is constant. O



