Homework 9

1. (a) ¥y The tangent line at z = 1 intersects the z-axis at z =~ 2.3, s0
x3 =2 2.3. The tangent line at » = 2.3 mtersects the x-axis at
x =2 3, 50 xz ~= 3.0.
1
r
0 1 \\t"‘--..../"' x

(b) 1 = 5 would not be a better first approximation than o1 = 1 since the tangent line is nearly horizontal. In fact, the second
approximation for =1 = b appears to be to the left of z = 1.

¥
4. (a) (b)
A
If x1 = 0, then =9 is nepative, and x3 is even more If x1 = 1, the tangent line is horizontal and Newton’s
negative. The sequence of approximations does not method fails.
converge, that is, Newton’s method fails.
¥ ¥
(c) / (d) /
—‘/C\ —— '-"'//\ —
0 l—\y x of 1 { y x
If 21 = 3, then 2 = 1 and we have the same situation If 1 = 4, the tangent line 1s horizontal and Newton’s
as in part (b). Newton’s method fails again. method fails.
(e) ¥ If 1 = b, then x5 1s greater than €, x5 gets closer to €, and

the sequence of approximations converges to 6. Newton’s

method succeeds!

1% — 100

_ 100 _ TN 99 — . —
12. f(z) == 100 = f'(x) =100x7"" 50 xpny1 = xn 10023

. We need to find approximations until they agree
to eight decimal places. =1 = 1.056 = w3 == 1.04748471, z3 = 1.04713448, x4 = 1.04712855 =~ =x5.

So *°Y/100 =2 1.04712855, to eight decimal places.
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Homework 9

1/zn —a

5= = %n+%n —a:ri = 2xn —aIi.
_l/l"’rﬂ,

1 1
30. (@) f(x) = il = fl(z)= _?,S’Oﬂ:n+l =&n —

(b) Usmng (a) with o = 1.6894 and z1 = % = 0.5, we get 22 = 0.5754, =2 =~ 0.588485, and x4 == 0.588789 == 5.
So 1/1_6984 == 0.588789.

3 2

2 f(z) =12’ — 2246 = Flz)= %—2%+ﬁx+0=%w3—m2—l—ﬁm—l—0

[ %] e

4 f(z) =82" —32° +122° = F(z)=8(F%2") -3(32") +12(42*) +C0=22"" - 22" + 3" + C

= I

€ .
3t—Inlt| ——+Cy ift<0
3t* — 2 + 612 1 6 _
14. f(t) = t—4+ =3- tm has domain (—occ,0) U (0, o), so F(t) = ¢

6 _
3t—Inlt——+Cy f¢>0

See Example 1(b) for a simular problem.

24+a°  14+(1+2°) 1

= +1 = F(z)=tan ‘z+z+C
1+ a2 1+ x? 1+ 2 {I} ano =T

22. f(z) =

52. We know right away that ¢ cannot be f’s antiderivative, since the slope of ¢ 1s not zero at the x-value where f = 0. Now f 1s

posttive when « 1s increasing and negative when « 1s decreasing, so a 1s the antidertvative of f.

53. ¥ The graph of F must start at (0, 1). Where the given graph, y = f(x), has a
. / \ ) local minimum or maximum, the graph of F will have an inflection point.

0 1 / N Where f 1s negative (positive), F 1s decreasing (increasing).
Where f changes from negative to positive, F will have a minimum.

¥y Where f changes from positive to negative, F' will have a maximum.

]-\ Where f is decreasing (increasing), £ is concave downward (upward).

0 P o= ...__: X

y=rN /P
min.
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Homework 9

6.

73.

(a) We first observe that since the stone is dropped 450 m above the ground, »(0) = 0 and s(0) = 450
V() =alt)=—98 = u(t)=-98+C Nowv(0)=0 = C=0s0ov(t)=—98 =
s(t) = —4.9£* + D Last 5(0) = 450 = D =450 = s(t) =450 — 4.9¢2.

(b) The stone reaches the ground when s() = 0. 450 —4.9t> =0 = 2 =450/49 = ¢ = ,/450/49~958s.

(c) The velocity with which the stone strikes the ground is v(#;) = —9.8,/450/4.9 == —03 9 m/s.
(d) This 1s just reworking parts (a) and (b) with ©(0) = —5. Using v(t) = —98t+C . v(0) =—-5 = 0+C=-5 =
v(t) = —98t — 5 Sos(t) = —49t2 —5t + Dand s(0) =450 = D =450 = s(t) = —4.9t° — 5t 4 450.

Solving s(t) = 0 by using the quadratic formula gives us ¢ = (5 4+ /8845 )/(—9.8) = ¢ ~=9.09s.

Taking the upward direction to be positive we have that for 0 < £ < 10 (using the subscript 1 to refer to 0 << ¢ < 10),
a1(t) = —(9—09t) =vj(t) = wvi(t) = —9+ 045t + vy butv1(0) = v = —10 =

v1(t) = —9t +0.45¢> — 10 = s{(t) = s1(t) = —3t° +0.15¢° — 10t + s0. But 51(0) = 500 = 50 =

s1(t) = —2¢£% +0.15£° — 10¢ + 500 5:1(10) = —450 4 150 — 100 + 500 = 100, so it takes

more than 10 seconds for the raindrop to fall. Now for ¢t > 10, a(t) = 0 = v'(¢t) =

v(t) = constant = v3(10) = —9(10) 4+ 0.45(10)> — 10 = —55 = wv(t) = —55.

At 55 m/s, it will take 100/55 == 1.8 s to fall the last 100 m. Hence, the total time 1s 10 + 2% = 12 =~ 11.8s.

fl2)=2vT—= [-1,1] fl(z)==z-3(1-2)"*(-1)+(1-2)"*(1)=(1-2)* [-fe+(1-2)] = ! I__i

flz)=0 = z=2% f(x)doesnotexist & x=1 Ff(z)>0for—1<z<2andf(x)<0forl<a<l, so

f(3)= %\/% = £ V/3 [~0.38] is a local maximum value. Checking the endpoints, we find f(—1) = —v/2Z and f(1) = 0.

Thus, f(—1) = —+/2 is the absolute minimum value and f (%) = % 3 is the absolute maximum value.

14. y = (tanx)**® = Ilny=cosx Intanz, so

im Iny= lim Intan = E im (1/ tan =) sec’ —  lim sec;t: — lim -:.052:.," _ E —o,
z—s(m/2)— z—(m/2)— secx z—(m/2)— secx tanx z—(x/2)— tan" x z—(w/2)— sIn” x 12
so  lim (tanz)®™*® = lim e€®Y=¢"=1.

a—(w/2)~ z—(7/2)~
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Homework 9

30. y=f(z) =4z —tanz, —F <2< 3 A. D=(—%,3). B. yintercept= f(0) =0 C. f(—z)= —f(z),sothe

[E1E]

curve is symmetric about (0,0) . D. lim (4z —tanz)= —oc, lim +{4.r—tan:r)=oo, sox=gandx = —
a2 z——,2
are VA, E. fl(zx) =4—sec’z >0 & secz<2 < cosz >3 < —% <ax< %, sofisincreasing on
w7 : s s wOT T 4w :
(—%.%) and decreasmgon (—%,—%) and (£,3). F f(3)=%-+v31s H b
m aw
x=—7 x=%

a local maximum value, f(—%) = /3 — % is a local minimum value.

G. f"(m]:—2se¢:2mtanw>(} & tanz <0 & —-Z<xz<0, 0

=y

so fisCUon (—%,0) and CD on (0, Z). IP at (0, 0)

77. Choosing the positive direction to be upward, we have a(t) = —98 = o(t) = —98t+ vy, butv(0) =0=2vy =

v(t) = —98t=5'(t) = a(t) = —49t" 4 59, buts(0) = 5 =500 = s(t) = —4.9¢> + 500. When s = 0,
—49t +500 =0 = t; = /30 ~101 = wv(t)=—9.8,/5 ~ —98.995 m/s. Smce the canister has been

designed to withstand an impact velocity of 100 m/'s, the canister will not burst
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79. (a) ¥ The cross-sectional area of the rectangular beam 1s
x4+ ¥ =100
A =2z 2y=4zy =4z /100 — 22, 0 < = < 10, so
y
dA 1 2y-1/2 2412
— = 4x(3)(100 — =z*)7V?(—2z) 4 (100 — =*)"/* - 4
0 X x dx
—4a? 212 A==’ + (100 —2°)]
=~ Too—=2)12 © 4(100 —27) % = (100 — z2)1/2

f{—A=then—m2+{10[]—w2]=(} = 22=50 = 2=+50=707 = y=,/100—(v50)" =50
i

Since A(0) = A(10) = 0, the rectangle of maximum area is a square.

(b) ¥ The cross-sectional area of each rectangular plank (shaded i the figure) 1s
- A=22(y—/50) =22[V100— 2% — v/50], 0 < = < /50, so
V50 dA

== —2(v/100 — 22 — V50) +22(%)(100 — 2%) /% (—2z)

0 X x x

22
_ A Vo e
= 2(100 — =) 2+/50 (100 — 22)1/2

dA
Set — =0: (100 — 2?) — /B0 (100 — 29)V/2 —2? =0 = 100 — 2z® = /50 (100 — =?)*/? =

10,000 — 400z + 4z* = 50(100 — =?) = 4a* —3502® +5000=0 = 2z* —175z% +2500=0 =

175 + /10625
xt = T’ ~69520r1798 = x=~834o0r424 But834 > /50,5021 =424 =

y — /50 = /100 — 22 — /50 = 1.99. Each plank should have dimensions about 8% inches by 2 inches.

(c) From the figure in part (a), the width is 2= and the depth is 2y, so the strength is

S = k(22)(2y)? = 8kxy® = 8kx(100 — 2?) = 800kx — 8ka®. 0 < 2 < 10. dS/dx = 800k — 24kz> = 0 when

24k2’ =800k = =1 = 2=2% = y=,/%=%§=v’ix_smceS(u):s{m):u,me

maximum strength occurs when = = %. The dimensions should be % == 11.55 mches by 2&7“;5 =~ 16.33 mches.

84. (a) V'(¢) 1s the rate of change of the volume of the water with respect to time. H'(t) is the rate of change of the height of the
water with respect to time_ Since the volume and the height are increasing, V' (t) and H'(t) are positive.
(b) V'(t) is constant, so V"' (%) is zero (the slope of a constant function is 0).
(c) At first, the height A of the water increases quickly because the tank i1s narrow. But as the sphere widens, the rate of
increase of the height slows down, reaching a mimmum at ¢ = ¢». Thus, the height 15 increasing at a decreasing rate on

(0, £2), so its graph is concave downward and H" (¢,) < 0. As the sphere narrows for ¢ = 9, the rate of increase of the
height begins to increase, and the graph of H is concave upward. Therefore, H"(t2) = 0 and H" (t3) > 0.
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