Calculus Il : Homework 11

2. First we draw a line passing through Dubbo and Sydney. We approximate the directional derivative at Dubbo in the direction
of Sydney by the average rate of change of temperature between the points where the line intersects the contour lines closest to
Dubbo. In the direction of Sydney, the temperature changes from 30°C to 27°C. We estimate the distance between these two
points to be approximately 120 km, so the rate of change of maximum temperature in the direction given is approximately

2730 — _0.025°C/km.

4 f(z,y) =2y +2*° = faolz,y) = 32%y* +42%)° and f,(z, y) = 42°y® + 3z*y* If uis a unit vector in the

direction of § = Z, then from Equation 6, Duf(1,1) = f2(1,1) cos(Z) + f,(1,1)sin(Z) =7- %2 4 7.1 = T+15

1. f(z,y) = sin(2z + 3y)
af .  of . . . . .
(a) Vf(m,y)=El+a—y,]=[oos(2x+3y)—2]1+[cos(2x+3y)—B]J=2003(2x+3y)1+3¢os(2$+3y),]
(b) VF(—6,4) = (2cos0)i+ (3cos0)j = 21+ 3
(c) By Equation 9, Dy, f(—6,4) = Vf(—6.4) -u=(2i+3j) - 3(v3i—-j)=2(2v3-3)=3-3.

2. f(z,y,z)=z2y+yz+zx = Vf(r,y,2)=y+zz+zy+z),s0Vf(l,—1,3)=(2,4,0). The unit vector in the

—

direction of PQ = (1,5,2) isu = 7;—0{]?5, 2),50 Dy f(1,-1,3) =Vf(1,-1,3) - u=(2,4,0) 713—{'{1?5,2) = 7232—0_
2. f(s,t) =te”* = Vf(s,t) = (te’*(t),te”*(s) + (1)) = (e, (st + 1)e™*).

V£(0,2) = (4, 1) is the direction of maximum rate of change, and the maximum rate is |[Vf(0,2)| = v16 + 1 = V1T,

25 flzy.z)=a?+y2+22 =

Vi(z,y,2)= <%(m2 +y’+27)7% 22 J(2® + 7+ 2%) 7 2y, 3 (@ 0P + )R 22}

_ x y z
<x/a:2—|—y2+22’ Va? +y? + 22 \/m2+y2+z2>?

Vf(3,6,-2) = <V%, V%, _—_fg> = (%, g, —%:) Thus the maximum rate of change is

|V£(3.6,-2)| = \/(2)2 +(8)?+(-2)° = \/&l%l-—“ = 11n the direction (2, £, —2} or equivalently (3,6, —2).
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33. VV(z,y,z) = (10 — 3y + yz,zz — 3z, zy), VV(3,4,5) = (38,6,12)
(2) DuV(3.4,5) = (38,6.12) - Do (1,1,-1) = &

(b) VV(3,4,5) = (38,6,12), or equivalently, (19,3,6).

(©) [VV(3,4,5)] = +/38% + 62 + 122 = /1624 = 2/406

44. Let F(z,y,2) =xy+ yz + 2z. Thenzy + yz + zz = 515 a level surface of Fand VF(z,y,2) = (y+z, 2 + z,2 + y).
(a) VF(1,2,1) = (3,2, 3) 15 a normal vector for the tangent plane at (1,2, 1), so an equation of the tangent plane
is3(z—1)4+2(y—2)+3(z—1) =00r3z+ 2y + 3z =10
(b) The normal line has direction (3,2, 3), so parametric equations are x = 1 + 3t, y = 24 2t, z = 1 + 3¢, and symmetric

z—1 y—2 z-1
2 1 3

equations are

55.
The hyperboloid z* — y* — 2% = 1 is a level surface of F(z,y,2) = 2° —y* — 2% and VF (z,y,2) = (2, 2y, —22) is a

normal vector to the surface and hence a normal vector for the tangent plane at (z, y, z). The tangent plane is parallel to the
plane z = z + y or z + y — z = 0 if and only if the corresponding normal vectors are parallel, so we need a point (o, Yo, Zo)
on the hyperboloid where (2z¢, —2y0, —220) = ¢ (1,1, —1) or equivalently (zo¢, —yo, —z0} = k (1,1, —1) for some k # 0.
Then we must have xo = k, yo = —k, zo = k and substituting into the equation of the hyperboloid gives

k* — (—k)? —k*=1 < —k? =1, an impossibility. Thus there is no such point on the hyperboloid.

2. (a) D = g22(0,2) gy (0,2) — [g24(0,2)]* = (=1)(1) — (€)> = —37. Since D < 0, g has a saddle point at (0, 2) by the
Second Derivatives Test.
() D = g2(0,2) g4 (0,2) — [g24(0,2)]* = (—1)(—8) — (2)® = 4. Since D > 0 and g.(0,2) < 0, g has a local
maximum at (0, 2) by the Second Derivatives Test.
(©) D = g22(0,2) g5 (0,2) — [924(0,2)]* = (4)(9) — (6)* = 0. In this case the Second Derivatives Test gives no
information about g at the point (0, 2).
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3

In the figure, a point at approximately (1, 1) is enclosed by level curves which are oval in shape and indicate that as we move
away from the point in any direction the values of f are increasing. Hence we would expect a local minimum at or near (1, 1).
The level curves near (0, 0) resemble hyperbolas, and as we move away from the origin, the values of f increase in some
directions and decrease in others, so we would expect to find a saddle point there.

To verify our predictions, we have f(z,y) =4+ 2° +3° —3zy = fo(z,y) =32 — 3y, fy(z,v) = 3y* — 3z. We
have critical points where these partial derivatives are equal to 0: 32> — 3y = 0, 3y* — 3z = 0. Substituting y = z” from the
first equation into the second equation gives 3(z%)> —3z =0 = 3z(z —1)=0 = =z =0orz = 1. Then we have
two critical points, (0,0) and (1, 1). The second partial derivatives are f..(z,y) = 6z, fzy(z,y) = —3, and f,,(z, y) = 6y,
50 D(2,Y) = fez (2, Y) fuu (@, ¥) — [fou (2, ¥)]? = (62)(6y) — (—3)* = 36zy — 9. Then D(0,0) = 36(0)(0) — 9 = —9,
and D(1,1) = 36(1)(1) — 9 = 27 Since D(0,0) < 0, f has a saddle point at (0, 0) by the Second Derivatives Test. Since
D(1,1) > 0and fz-(1,1) > 0, f has a local minimum at (1, 1).

44, Let x, y, z, be the positive numbers. Then z 4+ y + z = 12 and we want to minimize

51.

4y +2 =+ + (12—z—y) ! =flz.y)for0 <z, y <12 fo =22 +2(12 — 2 — y)(—1) = 4z + 2y — 24,
fu=2y+2(12 —z —y)(—1) =2z + 4y — 24, fox =4, foy =2, fyy = 4 Then f. = 0 implies 4z + 2y = 24 or

y = 12 — 2z and substituting into f, = 0 gives 2z + 4(12 —2x) =24 = 6x=24 = x=4andtheny=4 so
the only critical point is (4,4). D(4,4) =16 —4 > O and f..(4,.4) =4 > 0, s0 f(4,4) is a local minimum. f(4, 4) is also

the absolute minimum [compare to the values of f as z, ¥ — 0 or 12] so the numbers arex =y =z = 4.

Let the dimensions be x, y and z, then minimize zy + 2(xz + yz) if zyz = 32,000 cm®. Then

flz,y) = zy + [64,000(z + y)/zy] = zy +€4,000(z~ ' +y '), fo =y —€4,000z72, f, =z — 64,000y 2.
And f, = 0 implies y = 64,000/ :;czg substituting into f, = 0 implies zd = 64,000 or x = 40 and then y = 40. Now
D(z,y) = [(2)(64,000)]*z=%y=F — 1 > 0 for (40,40) and f.-(40,40) > 0 so this is indeed a minimum. Thus the

dimensions of the boxarez = y = 40 cm, z = 20 cm.
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