Calculus 3: Homework 6

1. $\mathbf{r}(t) = \langle t, 3\cos t, 3\sin t \rangle \Rightarrow \mathbf{r}'(t) = \langle 1, -3\sin t, 3\cos t \rangle \Rightarrow$ $|\mathbf{r}'(t)| = \sqrt{1^2 + (-3\sin t)^2 + (3\cos t)^2} = \sqrt{1 + 9(\sin^2 t + \cos^2 t)} = \sqrt{10}.$ Then using Formula 3, we have $L = \int_{-5}^{5} |\mathbf{r}'(t)| dt = \int_{-5}^{5} \sqrt{10} dt = \sqrt{10}t \Big]_{-5}^{5} = 10\sqrt{10}.$

4. $\mathbf{r}(t) = \cos t \mathbf{i} + \sin t \mathbf{j} + \ln \cos t \mathbf{k} \implies \mathbf{r}'(t) = -\sin t \mathbf{i} + \cos t \mathbf{j} + \frac{-\sin t}{\cos t} \mathbf{k} = -\sin t \mathbf{i} + \cos t \mathbf{j} - \tan t \mathbf{k}$

 $|\mathbf{r}'(t)| = \sqrt{(-\sin t)^2 + \cos^2 t + (-\tan t)^2} = \sqrt{1 + \tan^2 t} = \sqrt{\sec^2 t} = |\sec t|$. Since $\sec t > 0$ for $0 \le t \le \pi/4$, here we can say $|\mathbf{r}'(t)| = \sec t$. Then

$$\begin{split} L &= \int_0^{\pi/4} \sec t \, dt = \left[\ln|\sec t + \tan t| \right]_0^{\pi/4} = \ln\left|\sec\frac{\pi}{4} + \tan\frac{\pi}{4}\right| - \ln|\sec 0 + \tan 0| \\ &= \ln\left|\sqrt{2} + 1\right| - \ln\left|1 + 0\right| = \ln(\sqrt{2} + 1). \end{split}$$

- **13.** $\mathbf{r}(t) = 2t \, \mathbf{i} + (1 3t) \, \mathbf{j} + (5 + 4t) \, \mathbf{k} \implies \mathbf{r}'(t) = 2 \, \mathbf{i} 3 \, \mathbf{j} + 4 \, \mathbf{k} \text{ and } \frac{ds}{dt} = |\mathbf{r}'(t)| = \sqrt{4 + 9 + 16} = \sqrt{29}.$ Then $s = s(t) = \int_0^t |\mathbf{r}'(u)| \, du = \int_0^t \sqrt{29} \, du = \sqrt{29} \, t.$ Therefore, $t = \frac{1}{\sqrt{29}} s$, and substituting for t in the original equation, we have $\mathbf{r}(t(s)) = \frac{2}{\sqrt{29}} s \, \mathbf{i} + \left(1 \frac{3}{\sqrt{29}} s\right) \mathbf{j} + \left(5 + \frac{4}{\sqrt{29}} s\right) \mathbf{k}.$
- 15. Here $\mathbf{r}(t) = \langle 3 \sin t, 4t, 3 \cos t \rangle$, so $\mathbf{r}'(t) = \langle 3 \cos t, 4, -3 \sin t \rangle$ and $|\mathbf{r}'(t)| = \sqrt{9 \cos^2 t + 16 + 9 \sin^2 t} = \sqrt{25} = 5$. The point (0, 0, 3) corresponds to t = 0, so the arc length function beginning at (0, 0, 3) and measuring in the positive direction is given by $s(t) = \int_0^t |\mathbf{r}'(u)| du = \int_0^t 5 du = 5t$. $s(t) = 5 \Rightarrow 5t = 5 \Rightarrow t = 1$, thus your location after moving 5 units along the curve is $(3 \sin 1, 4, 3 \cos 1)$.

17. (a)
$$\mathbf{r}(t) = \langle t, 3\cos t, 3\sin t \rangle \Rightarrow \mathbf{r}'(t) = \langle 1, -3\sin t, 3\cos t \rangle \Rightarrow |\mathbf{r}'(t)| = \sqrt{1 + 9\sin^2 t + 9\cos^2 t} = \sqrt{10}.$$

Then $\mathbf{T}(t) = \frac{\mathbf{r}'(t)}{|\mathbf{r}'(t)|} = \frac{1}{\sqrt{10}} \langle 1, -3\sin t, 3\cos t \rangle$ or $\left\langle \frac{1}{\sqrt{10}}, -\frac{3}{\sqrt{10}}\sin t, \frac{3}{\sqrt{10}}\cos t \right\rangle.$
 $\mathbf{T}'(t) = \frac{1}{\sqrt{10}} \langle 0, -3\cos t, -3\sin t \rangle \Rightarrow |\mathbf{T}'(t)| = \frac{1}{\sqrt{10}} \sqrt{0 + 9\cos^2 t + 9\sin^2 t} = \frac{3}{\sqrt{10}}.$ Thus
 $\mathbf{N}(t) = \frac{\mathbf{T}'(t)}{|\mathbf{T}'(t)|} = \frac{1/\sqrt{10}}{3/\sqrt{10}} \langle 0, -3\cos t, -3\sin t \rangle = \langle 0, -\cos t, -\sin t \rangle.$
(b) $\kappa(t) = \frac{|\mathbf{T}'(t)|}{|\mathbf{r}'(t)|} = \frac{3/\sqrt{10}}{\sqrt{10}} = \frac{3}{10}$

24. $\mathbf{r}(t) = \langle t^2, \ln t, t \ln t \rangle \Rightarrow \mathbf{r}'(t) = \langle 2t, 1/t, 1 + \ln t \rangle, \quad \mathbf{r}''(t) = \langle 2, -1/t^2, 1/t \rangle.$ The point (1, 0, 0) corresponds to t = 1, and $\mathbf{r}'(1) = \langle 2, 1, 1 \rangle, \quad |\mathbf{r}'(1)| = \sqrt{2^2 + 1^2 + 1^2} = \sqrt{6}, \quad \mathbf{r}''(1) = \langle 2, -1, 1 \rangle, \quad \mathbf{r}'(1) \times \mathbf{r}''(1) = \langle 2, 0, -4 \rangle, \\ |\mathbf{r}'(1) \times \mathbf{r}''(1)| = \sqrt{2^2 + 0^2 + (-4)^2} = \sqrt{20} = 2\sqrt{5}.$ Then $\kappa(1) = \frac{|\mathbf{r}'(1) \times \mathbf{r}''(1)|}{|\mathbf{r}'(1)|^3} = \frac{2\sqrt{5}}{(\sqrt{6})^3} = \frac{2\sqrt{5}}{6\sqrt{6}} \text{ or } \frac{\sqrt{30}}{18}.$

32.

We can take the parabola as having its vertex at the origin and opening upward, so the equation is $f(x) = ax^2$, a > 0. Then by

Equation 11,
$$\kappa(x) = \frac{|f''(x)|}{[1 + (f'(x))^2]^{3/2}} = \frac{|2a|}{[1 + (2ax)^2]^{3/2}} = \frac{2a}{(1 + 4a^2x^2)^{3/2}}$$
, thus $\kappa(0) = 2a$. We want $\kappa(0) = 4$, so

a = 2 and the equation is $y = 2x^2$.

49. $(0, \pi, -2)$ corresponds to $t = \pi$. $\mathbf{r}(t) = \langle 2 \sin 3t, t, 2 \cos 3t \rangle \Rightarrow$

$$\mathbf{T}(t) = \frac{\mathbf{r}'(t)}{|\mathbf{r}'(t)|} = \frac{\langle 6\cos 3t, 1, -6\sin 3t \rangle}{\sqrt{36\cos^2 3t + 1 + 36\sin^2 3t}} = \frac{1}{\sqrt{37}} \langle 6\cos 3t, 1, -6\sin 3t \rangle.$$

 $\mathbf{T}(\pi) = \frac{1}{\sqrt{37}} \langle -6, 1, 0 \rangle$ is a normal vector for the normal plane, and so $\langle -6, 1, 0 \rangle$ is also normal. Thus an equation for the plane is $-6(x-0) + 1(y-\pi) + 0(z+2) = 0$ or $y - 6x = \pi$.

$$\mathbf{T}'(t) = \frac{1}{\sqrt{37}} \left\langle -18\sin 3t, 0, -18\cos 3t \right\rangle \quad \Rightarrow \quad |\mathbf{T}'(t)| = \frac{\sqrt{18^2 \sin^2 3t + 18^2 \cos^2 3t}}{\sqrt{37}} = \frac{18}{\sqrt{37}} \quad \Rightarrow \quad |\mathbf{T}'(t)| = \frac{1}{\sqrt{37}} \left\langle -18\sin 3t, 0, -18\cos 3t \right\rangle \quad \Rightarrow \quad |\mathbf{T}'(t)| = \frac{1}{\sqrt{37}} \left\langle -18\sin 3t, 0, -18\cos 3t \right\rangle \quad \Rightarrow \quad |\mathbf{T}'(t)| = \frac{1}{\sqrt{37}} \left\langle -18\sin 3t, 0, -18\cos 3t \right\rangle \quad \Rightarrow \quad |\mathbf{T}'(t)| = \frac{1}{\sqrt{37}} \left\langle -18\sin 3t, 0, -18\cos 3t \right\rangle \quad \Rightarrow \quad |\mathbf{T}'(t)| = \frac{1}{\sqrt{37}} \left\langle -18\sin 3t, 0, -18\cos 3t \right\rangle \quad \Rightarrow \quad |\mathbf{T}'(t)| = \frac{1}{\sqrt{37}} \left\langle -18\sin 3t, 0, -18\cos 3t \right\rangle \quad \Rightarrow \quad |\mathbf{T}'(t)| = \frac{1}{\sqrt{37}} \left\langle -18\sin 3t, 0, -18\cos 3t \right\rangle \quad \Rightarrow \quad |\mathbf{T}'(t)| = \frac{1}{\sqrt{37}} \left\langle -18\sin 3t, 0, -18\cos 3t \right\rangle \quad \Rightarrow \quad |\mathbf{T}'(t)| = \frac{1}{\sqrt{37}} \left\langle -18\sin 3t, 0, -18\cos 3t \right\rangle \quad \Rightarrow \quad |\mathbf{T}'(t)| = \frac{1}{\sqrt{37}} \left\langle -18\sin 3t, 0, -18\cos 3t \right\rangle \quad \Rightarrow \quad |\mathbf{T}'(t)| = \frac{1}{\sqrt{37}} \left\langle -18\sin 3t, 0, -18\cos 3t \right\rangle \quad \Rightarrow \quad |\mathbf{T}'(t)| = \frac{1}{\sqrt{37}} \left\langle -18\sin 3t, 0, -18\cos 3t \right\rangle \quad \Rightarrow \quad |\mathbf{T}'(t)| = \frac{1}{\sqrt{37}} \left\langle -18\sin 3t, 0, -18\cos 3t \right\rangle \quad \Rightarrow \quad |\mathbf{T}'(t)| = \frac{1}{\sqrt{37}} \left\langle -18\sin 3t, 0, -18\cos 3t \right\rangle \quad \Rightarrow \quad |\mathbf{T}'(t)| = \frac{1}{\sqrt{37}} \left\langle -18\sin 3t, 0, -18\cos 3t \right\rangle \quad \Rightarrow \quad |\mathbf{T}'(t)| = \frac{1}{\sqrt{37}} \left\langle -18\sin 3t, 0, -18\cos 3t \right\rangle \quad \Rightarrow \quad |\mathbf{T}'(t)| = \frac{1}{\sqrt{37}} \left\langle -18\sin 3t, 0, -18\cos 3t \right\rangle \quad \Rightarrow \quad |\mathbf{T}'(t)| = \frac{1}{\sqrt{37}} \left\langle -18\sin 3t, 0, -18\cos 3t \right\rangle \quad \Rightarrow \quad |\mathbf{T}'(t)| = \frac{1}{\sqrt{37}} \left\langle -18\sin 3t, 0, -18\cos 3t \right\rangle \quad \Rightarrow \quad |\mathbf{T}'(t)| = \frac{1}{\sqrt{37}} \left\langle -18\sin 3t, 0, -18\cos 3t \right\rangle \quad \Rightarrow \quad |\mathbf{T}'(t)| = \frac{1}{\sqrt{37}} \left\langle -18\sin 3t, 0, -18\cos 3t \right\rangle \quad \Rightarrow \quad |\mathbf{T}'(t)| = \frac{1}{\sqrt{37}} \left\langle -18\sin 3t, 0, -18\cos 3t \right\rangle \quad \Rightarrow \quad |\mathbf{T}'(t)| = \frac{1}{\sqrt{37}} \left\langle -18\sin 3t, 0, -18\cos 3t \right\rangle \quad \Rightarrow \quad |\mathbf{T}'(t)| = \frac{1}{\sqrt{37}} \left\langle -18\sin 3t, 0, -18\cos 3t \right\rangle \quad \Rightarrow \quad |\mathbf{T}'(t)| = \frac{1}{\sqrt{37}} \left\langle -18\sin 3t, 0, -18\cos 3t \right\rangle \quad \Rightarrow \quad |\mathbf{T}'(t)| = \frac{1}{\sqrt{37}} \left\langle -18\sin 3t, 0, -18\cos 3t \right\rangle \quad \Rightarrow \quad |\mathbf{T}'(t)| = \frac{1}{\sqrt{37}} \left\langle -18\cos 3t, 0, -18\cos 3t \right\rangle \quad \Rightarrow \quad |\mathbf{T}'(t)| = \frac{1}{\sqrt{37}} \left\langle -18\cos 3t, 0, -18\cos 3t \right\rangle \quad \Rightarrow \quad |\mathbf{T}'(t)| = \frac{1}{\sqrt{37}} \left\langle -18\cos 3t, 0, -18\cos 3t \right\rangle \quad \Rightarrow \quad |\mathbf{T}'(t)| = \frac{1}{\sqrt{37}} \left\langle -18\cos 3t, 0, -18\cos 3t \right\rangle \quad \Rightarrow \quad |\mathbf{T}'(t)| = \frac{1}{\sqrt{37}} \left\langle -18\cos 3t, 0, -18\cos 3t \right\rangle \quad \Rightarrow \quad |\mathbf{T}'(t)| = \frac{1}{\sqrt{37}} \left\langle -18\cos 3t, 0, -18\cos 3t \right\rangle \quad \Rightarrow \quad |\mathbf{T}'(t)| = \frac{1}{\sqrt{37}} \left\langle -18\cos 3t, 0, -18\cos 3t \right\rangle \quad \Rightarrow \quad |\mathbf{T}'(t)| = \frac{1}{\sqrt{37}} \left\langle -18\cos 3t$$

$$\mathbf{N}(t) = \frac{\mathbf{T}'(t)}{|\mathbf{T}'(t)|} = \langle -\sin 3t, 0, -\cos 3t \rangle. \text{ So } \mathbf{N}(\pi) = \langle 0, 0, 1 \rangle \text{ and } \mathbf{B}(\pi) = \frac{1}{\sqrt{37}} \langle -6, 1, 0 \rangle \times \langle 0, 0, 1 \rangle = \frac{1}{\sqrt{37}} \langle 1, 6, 0 \rangle.$$

Since $\mathbf{B}(\pi)$ is a normal to the osculating plane, so is (1, 6, 0).

An equation for the plane is $1(x - 0) + 6(y - \pi) + 0(z + 2) = 0$ or $x + 6y = 6\pi$.

55.

First we parametrize the curve of intersection. We can choose y = t; then $x = y^2 = t^2$ and $z = x^2 = t^4$, and the curve is given by $\mathbf{r}(t) = \langle t^2, t, t^4 \rangle$. $\mathbf{r}'(t) = \langle 2t, 1, 4t^3 \rangle$ and the point (1, 1, 1) corresponds to t = 1, so $\mathbf{r}'(1) = \langle 2, 1, 4 \rangle$ is a normal vector for the normal plane. Thus an equation of the normal plane is

$$2(x-1) + 1(y-1) + 4(z-1) = 0 \text{ or } 2x + y + 4z = 7. \quad \mathbf{T}(t) = \frac{\mathbf{r}'(t)}{|\mathbf{r}'(t)|} = \frac{1}{\sqrt{4t^2 + 1 + 16t^6}} \langle 2t, 1, 4t^3 \rangle \text{ and}$$

$$\mathbf{T}'(t) = -\frac{1}{2}(4t^2 + 1 + 16t^6)^{-3/2}(8t + 96t^5) \langle 2t, 1, 4t^3 \rangle + (4t^2 + 1 + 16t^6)^{-1/2} \langle 2, 0, 12t^2 \rangle. \text{ A normal vector for}$$

the osculating plane is $\mathbf{B}(1) = \mathbf{T}(1) \times \mathbf{N}(1)$, but $\mathbf{r}'(1) = \langle 2, 1, 4 \rangle$ is parallel to $\mathbf{T}(1)$ and
$$\mathbf{T}'(1) = -\frac{1}{2}(21)^{-3/2}(104) \langle 2, 1, 4 \rangle + (21)^{-1/2} \langle 2, 0, 12 \rangle = \frac{2}{21\sqrt{21}} \langle -31, -26, 22 \rangle$$
 is parallel to $\mathbf{N}(1)$ as is $\langle -31, -26, 22 \rangle$
so $\langle 2, 1, 4 \rangle \times \langle -31, -26, 22 \rangle = \langle 126, -168, -21 \rangle$ is normal to the osculating plane. Thus an equation for the osculating plane is $126(x-1) - 168(y-1) - 21(z-1) = 0$ or $6x - 8y - z = -3$.