
Calculus III: Midterm II

Name:

• Read the problems carefully.

• You must show your work unless asked otherwise.

• Partial credit will be given for incomplete work.

• The exam contains 5 problems.

• The last page is the formula sheet, which you may detach.

• Good luck!

Question Points Score

1 10

2 10

3 10

4 10

5 10

Total: 50
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1. (10 points) Write true or false. No justification is needed.

(a) The acceleration vector is always contained in the normal plane.

Solution: False. For example, for an accelerated motion in a straight line, the
acceleration vector is in the same direction as the tangent vector, which is not
in the normal plane.

True False

(b) The curve parametrized by 〈t3, t3 − 1, 2t3〉 is a straight line.

Solution: True. As t goes from −∞ to ∞, so does t3, so the curve is the same
as 〈t, t− 1, 2t〉.

True False

(c) The graph of f(x, y) = 3xy + 2 is a plane.

Solution: False. The graph is the surface defined by z = 3xy+ 2, which is not
a linear equation.

True False

(d) The domain of the function f(x, y) = ln(x2 + y2 + 1) is the entire 〈x, y〉 plane.

Solution: True. Since x2 + y2 + 1 > 0 for all x, y, there is no problem in taking
ln.

True False

(e) If the speed is constant, then the acceleration must be zero.

Solution: False. For example, the speed is constant in a uniform circular mo-
tion, but the acceleration is certainly not zero.

True False
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2. Consider the curve C parametrized by

r(t) = sin2 t i− t j + cos2 t k.

(a) (4 points) Write parametric equations for the tangent line to C at t = 0.

Solution: The tangent line at t = 0 is the line through r(0) in the direction
r′(0). We have

r′(t) = 2 sin t cos ti− j− 2 cos t sin tk,

so that

r(0) = 〈0, 0, 1〉
r′(0) = 〈0,−1, 0〉.

Hence the tangent line is

x = 0 y = −t z = 1.

(b) (4 points) Write an equation for the normal plane to C at t = 0.

Solution: The normal plane at t = 0 is the plane through r(0) perpendicular
to r′(0). From our calculation of r′(0), we get that the equation is

(〈x, y, z〉 − 〈0, 0, 1〉) · 〈0,−1, 0〉 = 0

that is: y = 0.

(c) (2 points) The curve C lies on a plane. Find the equation of this plane.

Solution: To find a plane containing C, we must find a linear relation in x, y,
and z that is always satisfied when x = sin2 t, y = −t and z = cos2 t. Such a
relation is

x+ z = 1.

Hence C lies on the plane defined by x+ z = 1.
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3. When two asteroids collide, their fates depend on their speed at the time of impact and
also the angle of collision. Suppose the asteroids have trajectories −→a (t) = 〈t, 2t − t2, t〉
and
−→
b (t) = 〈t, t,− cos(πt)〉.

(a) (7 points) Find the speeds of A and B at the time of collision.

Solution: First, we must find the time of collision. This is a value of t for

which −→a (t) =
−→
b (t), that is

〈t, 2t− t2, t〉 = 〈t, t,− cos(πt).

Comparing the first coordinate gives nothing. The second coordinate gives
2t − t2 = t or t2 − t = 0. Therefore t = 0 or t = 1. However, the third
coordinates match only for t = 1. Hence the time of collision is t = 1.

Next, we have

−→a ′(t) = 〈1, 2− 2t2, 1〉 =⇒ −→a ′(1) = 〈1, 0, 1〉
−→
b ′(t) = 〈1, 1, π sin(πt) =⇒ −→

b ′(1) = 〈1, 1, 0〉.

Hence the speed of A at the time of collision is |−→a ′(1)| =
√

2 and the speef of

B at the time of collision is |−→b ′(1)| =
√

2.

(b) (3 points) Find the angle of collision.

Solution: The angle of collision is just the angle between the trajectories at
t = 1, which is the same as the angle between the respective tangent vectors
at t = 1. The angle θ between −→a ′(1) = 〈1, 0, 1〉 and b′(1) = 〈1, 1, 0〉 can be
calculated by

cos(θ) =
−→a ′(1) · −→b ′(1)

|−→a ′(1)||−→b ′(1)|
=

1

2
.

Hence θ = π/3.
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4. Let C be the intersection of the cylinder x2 + y2 = 9 and the plane x+ z = 0.

(a) (3 points) Find a vector function −→r (t) that parametrizes C.

Solution: Since z = −x and x and y by themselves describe a circle of radius
3, we can take

−→r (t) = 〈3 cos t, 3 sin t,−3 cos t〉.

(b) (7 points) Find point(s) on C at which the curvature is the maximum. What is the
maximum value of the curvature?

Solution: Firstly, we have to compute the curvature (which will depend on t)
and then find the value of t that maximizes it. We know

κ =
r′ × r′′
|r′|3

r′(t) = 〈−3 sin t, 3 cos t, 3 sin t〉
r′′(t) = 〈−3 cos t,−3 sin t, 3 cos t〉

r′(t)× r′′(t) = 〈9, 0, 9〉
|r′(t)| =

√
9 sin2 t+ 9 cos2 t+ 9 sin2 t

= 3
√

1 + sin2 t

so that κ =
|〈9, 0, 9〉|

27(1 + sin2 t)3/2
=

√
2

3(1 + sin2 t)3/2
.

Since the numerator is constant, κ is maximum when the denominator is mini-
mum, or equivalently, when 1 + sin2 t is minimum. But the lowest value of sin2 t
is 0, achieved when t = 0, π, . . . . Hence the maximum value of κ is

κmax =

√
2

3
.

It is achieved when t = 0, π, . . . , which correspond to the points

P1 = 〈3, 0,−3〉 and P2 = 〈−3, 0, 3〉

on C.
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5. This question concerns the helical road described by the equations

x = 3 sin t y = 3 cos t z = 4t.

The units for distance in this problem are meters and the units for time are seconds.

(a) (4 points) A car going up along this road starts at (0, 3, 0) and travels 5π meters.
Where is it now?

Solution: The starting point corresponds to t = 0. Suppose the car is at the
point corresponding to t = T after going 5π meters. Then the length of the
road from t = 0 to t = T is 5π. In other words,

5π =

∫ T

0

|〈3 cos t,−3 sin t, 4〉| dt =

∫ T

0

5 dt = 5T.

Therefore T = π. Hence the car is at

〈0,−3, 4π〉.

(b) (6 points) The road is banked (tilted) to handle acceleration of up to 4 m/s2 in the
normal direction. What should be the speed limit on this piece of road? Justify
your answer.

Solution: Suppose we have a car going at the speed s. The constraint is that
the normal component of its acceleration must be at most 4. But we know
that aN = κs2, where κ is the curvature of the road. Therefore, we must have

κs2 ≤ 4, that is s ≤
√

4
κ

So the speed limit should be
√

4
κ
.

Setting r(t) = 〈3 sin t, 3 cos t, 4t〉, we have

κ =
|r′ × r′′|
|r′|3

r′(t) = 〈3 cos t,−3 sin t, 4〉
r′′(t) = 〈−3 sin t,−3 cos t, 0〉

r′(t)× r′′(t) = 〈12 cos t, 12 sin t,−9〉

κ =

√
122 + 92

√
32 + 42

3 =
3

25
.

Hence the speed limit should be√
4

κ
=

√
100

3
=

10√
3
.



LIST OF USEFUL IDENTITIES

1. Derivatives

(1) d
dx
xn = nxn−1

(2) d
dx

sinx = cosx

(3) d
dx

cosx = − sinx

(4) d
dx

tanx = sec2 x

(5) d
dx

cotx = − csc2 x

(6) d
dx

secx = secx tanx

(7) d
dx

cscx = − cscx cotx

(8) d
dx
ex = ex

(9) d
dx

ln |x| = 1
x

(10) d
dx

arcsinx = 1√
1−x2

(11) d
dx

arccosx = −1√
1−x2

(12) d
dx

arctanx = 1
1+x2

2. Trigonometry

(1) sin2 x+ cos2 x = 1

(2) tan2 x+ 1 = sec2 x

(3) 1 + cot2 x = csc2 x

(4) sin(x± y) = sinx cos y ± cosx sin y

(5) cos(x± y) = cos x cos y ∓ sinx sin y

(6) sin2 x = 1−cos 2x
2

(7) cos2 x = 1+cos 2x
2

.

3. Space curves

For a parametric space curve given by r(t)

(1) Curvature κ =
|r′(t)× r′′(t)|
|r′(t)|3 .

(2) Tangent component of acceleration aT = |r′(t)|′ = r′(t) · r′′(t)
|r′(t)| .

(3) Normal component of acceleration aN = κ|r′(t)|2 = |r
′(t)× r′′(t)|
|r′(t)| .
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