Calculus III: Practice Midterm I

Name: _

- Write your solutions in the space provided. Continue on the back if you need more space.
- You must show your work. Only writing the final answer will receive little credit.
- Partial credit will be given for incomplete work.
- The exam contains 6 problems.
- Good luck!

Question	Points	Score
1	8	
2	10	
3	10	
4	10	
5	10	
6	12	
Total:	60	

Calc III (Spring '13)	Practice Midterm I	Page	$e \ 2 \ of \ 7$
1. Write true or false. No	justification is needed.		
(a) (2 points) There is	is a vector \mathbf{v} such that		
	$\mathbf{v} \times \langle 1, 1, 1 \rangle = \langle 1, 2, 3 \rangle.$		
		True	False

(b) (2 points) The sixth power of $2e^{i\pi/6}$ is a real number.

True False

(c) (2 points) The surface described by $x^2 + y^2 - z^2 = 1$ is a hyperbolic paraboloid. True False

(d) (2 points) The plane 2x + 4y + 6z = 9 is perpendicular to the vector $\langle 1, 1, -1 \rangle$. True False

- 2. Determine whether the following vectors are parallel, perpendicular or neither. Explain why.
 - (a) (3 points) $\langle 2, -3, 1 \rangle$ and $\langle 2, 1, -1 \rangle$.

(b) (3 points) $2 \mathbf{i} + \mathbf{j} - 4 \mathbf{k}$ and $-14 \mathbf{i} + 7 \mathbf{j} + 14 \mathbf{k}$.

(c) (4 points) $\langle 1, 1, 1 \rangle$ and $\langle 2, 1, 2 \rangle \times \langle 1, 0, 1 \rangle$.

 $\frac{\text{Calc III (Spring '13)} \quad \text{Practice Midterm I} \quad \text{Page 4 of 7}}{3. (10 \text{ points}) \text{ Do the four poins } (1,1,0), (1,1,-2), (0,2,-1) \text{ and } (5,-3,0) \text{ lie on the same}}$ plane? Justify your answer.

Practice Midterm I

4. (10 points) Find all the complex valued solutions of the equation

 $x^3 = i.$

Express your answers both in polar and Cartesian forms.

5. Let P be the plane perpendicular to (1,2,3) and passing through the point (1,0,1).
(a) (5 points) Find an equation for P.

(b) (5 points) Does the line given by x(t) = 3t + 1, y(t) = 3 and z(t) = -t + 3 intersect the plane P?

- 6. For which (real) values of a are the vectors $\langle 1, a, 2 \rangle$ and $\langle a, 4, 4 \rangle$
 - (a) (3 points) parallel?

(b) (3 points) perpendicular?

(c) (6 points) For which a, does the first vector $\langle 1, a, 2 \rangle$ make an angle of $\pi/4$ with the vector **j**?