Calculus III

- Domain
- Graph
- Contour plot / level curves
- Level surfaces

- Showing a limit does not exist
- Finding a limit (if exists): Limit laws
- Continuity

Partial derivatives: Computation and applications

- Meaning of $\frac{\partial f}{\partial x}$, $\frac{\partial f}{\partial y}$ etc.
- Estimating from tables or contour plots
- Calculating from a formula
- Calculating higher derivatives
- Calculating using the chain rule
- Using them for linear approximations (differentials)
- Using them for the tangent plane to a graph.

Gradient and the directional derivatives

- Calculating ∇f .
- Calculating directional derivatives using ∇f .
- Interpretation of ∇f (direction and magnitude).
- Normals to level curves/surfaces.

- Finding the critical points.
- Characterizing them as local maxima, local minima, or saddle (second derivative test).
- Global maxima or minima (test boundary and critical points).
- Maxima and minima under a constraint (Lagrange multipliers).

You are not responsible for:

- ϵ - δ definition of limit.
- Partial differential equations.
- Cobb-Douglas Function.
- Implicit differentiation.
- Two or more constraints.

- Suppose the level curves are parallel straight lines. Does the graph have to be a plane?
- 2 Sketch a contour map for $\sqrt{4x^2 + y^2}$.
- The level surfaces of $x^2 + y^2 + 2z^2$ are more like (American) footballs or basketballs?

Can you define f(0,0) so that f(x, y) is continuous at (0,0)?
f(x,y) = |x| + |y − 1|
f(x,y) = x^y.

Calculus III

- Find the tangent plane to the graph of $x^2 + xy$ at (1, 1, 2).
- You invest P = \$4000 at the simple interest of R = 8%. Then you get I = \$320 per year. If the rate changes to 7.9%, what is the approximate change in I?

Calculus III

- Find a normal vector to the surface $x^2 + 2y^2 + 3z^2 = 9$ at (2,1,1).
- **②** Find the tangent plane to this surface at (2, 1, 1).
- **③** True or false for a function f(x, y) and a point P = (x, y).
 - There must be a vector u in which $D_u f(P) = 0$.
 - **2** There must be a vector u in which $D_u f(P) = 1$.

- Verify that the function f(x, y) = e^x e^y x y has a critical point at the origin.
- Oetermine whether it is a local maximum, local minimum, or a saddle point.
- Find the point on the circle x² + y² = 1 where 2x 3y is maximum.
- Find the point on the ellipse x² + xy + y² = 27 that is closest to the origin.

