Schemes and functors

Anand Deopurkar

Example 1. Let *V* be an *n* dimensional vector space over a field *k*. The set of one dimensional subspaces of *V* corresponds bijectively to the points of the projective space **P***V*. More generally, the set of *r* dimensional subspaces of *V* corresponds bijectively to the points of the Grassmannian **Gr**(*r*, *V*).

Example 2. Consider the set of hypersurfaces of degree *d* in a fixed projective space **P** *n* . Using the homogeneous coordinates $[X_0 : \cdots : X_n]$, we can describe a hypersurface by an equation

$$
\sum_{i_1+\cdots+i_n=d} a_{i_1,\ldots,i_n} X_0^{i_1}\cdots X_n^{i_n}.
$$

So a hypersurface can be specified by a system of $\binom{n+d}{d}$ coefficients a_{i_1,\dots,i_d} , subject to the restriction that not all of them are zero, and with the understanding that scaling all of them by the same non-zero constant gives the same hypersurface. Therefore, the set of hypersurfaces of degree *d* in \mathbf{P}^n corresponds bijectively to the points of \mathbf{P}^N , where $N = \binom{n+d}{d}$.

Example 3. Let *C* be a smooth projective curve of genus *g* over **C**. Consider the set of line bundles of degree zero on *C*. A line bundle may be specified by an open cover {*Uⁱ* } of *C*, and transition functions $g_{i,j}$: $U_i \cap U_j \to \mathbb{C}^*$ satisfying $g_{i,j} \circ g_{j,k} = g_{i,k}$ on $U_i \cap U_j \cap U_k$. A function $U_i \cap U_j \to \mathbb{C}^*$ is simply an element of O_C^* C^*_C on $U_i \cap U_j$. In this way, a line bundle gives a Cěch 1-cocycle for the sheaf *O* ∗ *_C on $\{U_i\}.$ It is easy to check that the two cocycles obtained from two isomorphic line bundles differ only by a Cěch coboundary. We thus get a map from the set of line bundles on *C* to $H^1(C, O_C^*)$ *C*).

On the other hand, given an element of $H^1(C, O_C^*)$ $_{C}^{\ast}$), we may represent it by a Cěch cocycle $g_{i,j}$ on some covering $\{U_i\}$ of C . Using the $g_{i,j}$ as transition functions, we can then construct a line bundle. It is easy to check that two cocycles that differ by a coboundary give isomorphic line bundles. We thus get a map from $H^1(C,O_C^\ast)$ *C*) to the set of line bundles on *C*.

The two maps constructed above are mutual inverses. So we may identify the set of line bundles on *C* with $H^1(C, O_C^*)$ *C*).

Now consider the exponential exact sequence of analytic sheaves on *C*

$$
0 \to \mathbf{Z} \to O_C \to O_C^* \to 0,
$$

where $O_C \rightarrow O_C^*$ C_c^* is given by $f \mapsto \exp(2\pi i f)$. The induced map $H^1(C, O_C^*)$ C_{C}^{*}) \rightarrow $H^{2}(C, \mathbf{Z}) = \mathbf{Z}$ is the degree map. The line bundles of degree zero, therefore, correspond bijectively to the quotient $H^1(C, O_C)/H^1(C, \mathbf{Z})$.

We have $H^1(C, O_C) \cong \mathbf{C}^g$ and $H^1(C, \mathbf{Z}) \cong \mathbf{Z}^{2g}$. Furthermore, $H^1(C, \mathbf{Z}) \subset H^1(C, O_C)$ exhibits $H^1(\mathcal{C}, \mathbf{Z})$ as a lattice in $H^1(\mathcal{C}, O_{\mathcal{C}}).$ As a result, the quotient is topologically a torus $(S^1)^{2g}.$ By construction, it is also a complex manifold. It turns out that it actually has the structure of an algebraic variety.

In any case, the set of line bundles of degree zero on *C* corresponds bijectively to the points of a (topological) torus, or a complex manifold, or (taking the last statement on faith) a complex algebraic variety.

The examples above show that many sets of algebro-geometric objects are in bijection with points of an algebraic variety. In some sense, such a variety *parametrize* those algebrogeometric objects. We often say that it is the *moduli space* of those objects.

Let us take the example of a Grassmannian. We want to say that the Grassmannian **Gr**(*r*, *n*) is the moduli space of *r* dimensional subspaces of an *n* dimensional space. To give content to this statement, we must define our terms.

Definition 4 (Attempt 1)**.** The moduli space of *r* dimensional subspaces of an *n* dimensional vector space is a scheme *G* whose *k*-points are in bijection with the set of *r* dimensional subspaces of k^n .

This definition is almost useless. Many schemes satisfy this definition (so, in particular, our article "the" is grossly misplaced.) Indeed, if we take $k = C$, then the set of points of any non-finite scheme over **C** is in some bijection with the set of *r* dimensional subspaces of *k n* , simply because these are two sets of the same cardinality.

One way to inject some content into the definition is to remember that *k* points of a scheme are just maps from Spec *k* to the scheme. We then look at maps not just from Spec *k* but also from other schemes *X*. Given a map $\phi: X \to \mathbf{Gr}(r,n)$, the subspaces $\phi(x)$ give us a family of *r*-dimensional subspaces of an *n* dimensional, parametrized by the points of *X*. If ϕ is an algebraic map, then the resulting family of subspaces ought to be varying algebraically (whatever that means). Conversely, given an algebraically varying family of *r*-dimensional subspaces of an *n* dimensional vector space parametrized by *X*, we ought to get an algebraic map $X \to Gr(r, n)$. It is easy to formalize the notion of an algebraically varying family of *r*dimensional subspaces of *V* parametrized by *X*. Such a family should simply be an (algebraic) sub vector bundle of rank r of the trivial vector bundle O_r^n *X* . We now upgrade our previous attempted definition.

Denote by $\text{Sub}_{r,n}(X)$ the set of rank r sub vector bundles of O_X^n *X* .

Remark 1*.* The notion of a sub vector bundle of a vector bundle is slightly tricky. A sub vector bundle of O_v^n $\frac{n}{X}$ is *not the same* as a locally free subsheaf of O_X^n $\frac{n}{X}$. For the correct notion of a sub vector bundle, convince yourself of the following. Let *E* be a locally free sheaf and $F \subset E$ a subsheaf. Then the following are equivalent.

1. for every $x \in X$, the map on the fibers $F|_x \to E|_x$ is injective.

2. *F* and *E/F* are locally free.

We say that $F \subset E$ is a sub vector bundle if it satisfies these conditions.

Definition 5 (Attempt 2)**.** The moduli space of *r* dimensional subspaces of an *n* dimensional vector space is a scheme *G* for which we have a bijection i_X : Maps $(X, G) \to Sub_{r,n}(X)$ for all schemes *X*.

This appears better, but on a second thought we realize that we are requiring bijections between (many pairs of) two sets, which are very likely of the same size. However, we do not want arbitrary bijections; we want bijections that are compatible with morphisms. Indeed, suppose we have a map $\phi: X \to Y$. Then the correspondence $i_X: \text{Maps}(X, G) \to \text{Sub}_{r,n}(X)$ and i_Y : Maps(*Y*, *G*) \rightarrow Sub_{*r*,*n*}(*Y*) must be such that

$$
i_X(f \circ \phi) = \phi^* i_Y(f). \tag{1}
$$

In other words, the family of subspaces on *X* obtained from the map *f* ◦*φ* must be the pullback (via ϕ) of the family on *Y* obtained from *f*.

Said more formally, we define a contravariant functor from the category Schemes to the category Sets by the rule that sends a scheme *X* to the set Maps(X , G) and a morphism $\phi: X \to Y$ to the function Maps(*Y*, *G*) \to Maps(*X*, *G*) defined by $f \mapsto \phi \circ f$. Similarly, we define a functor $\text{Sub}_{r,n}(-)$ by the rule that sends a scheme *X* to $\text{Sub}_{r,n}(X)$ and a morphism $\phi: X \to Y$ to the pullback map ϕ^* : Sub_{r,n}(*Y*) \to Sub_{r,n}(*X*). Saying that there exist bijections i_X : Maps(*X*, *G*) \rightarrow Sub_{r,*n*}(*X*) for all *X* that satisfy [\(1\)](#page-2-0) is the same as saying that there exists a natural isomorphism between the two functors Maps(−,*G*) and Sub*r*,*ⁿ* (−).

Definition 6. The moduli space of *r* dimensional subspaces of an *n* dimensional space is a scheme *G* such that the functor Maps(−,*G*) is naturally isomorphic to the functor Sub*r*,*ⁿ* (−).

Having defined our terms, we can state our theorem.

Theorem 7. *There exists a scheme* **Gr**(*r*, *n*) *with a natural isomorphism of functors*

 $\text{Maps}(-, \text{Gr}(r, n)) \cong \text{Sub}_{r,n}(-).$

The above procedure illustrates how we will formulate the claim that a certain scheme is the moduli space of a certain class of objects.

Definition 8. Let C be a category. If a contravariant functor $F: C \rightarrow$ Sets is isomorphic to the functor Maps(−, *X*) for some object *X* of C, then we say that *X represents F*.

Yoneda's lemma guarrantees that if a representing object *X* exists, then it is unique.

Proposition 9 (Yoneda's lemma). Let C *be any category, X an object of* C *, and F* : $C \rightarrow$ *Sets a contravariant functor.*

1. There is a bijection

{Natural transformations from Maps(-,
$$
X
$$
) to F } \leftrightarrow $F(X)$.

2. In particular, if Y is another object of C, then there is a bijection

{*Natural transformations from* Maps(−, *X*) *to* Maps(−, *Y*)} ↔ Maps(*X*, *Y*).

In particular, a natural isomorphism from Maps(−, *X*) *to* Maps(−, *Y*) *gives an isomorphism from X to Y .*

Let us now prove [Theorem 7.](#page-2-1) We will phrase the proof in the language that emphasizes the functorial point of view. For brevity, we will denote the functor Maps(−, *Y*) by *h^Y* . It is often called the *functor of points* of *Y* (because when we put Spec*R* in the place of −, we get the set of *R*-valued points of *Y*).

Definition 10. Let *F* be a contravariant functor from Schemes to Sets. We say that *F* is a *sheaf* (in the Zariski topology), if for every scheme X the following holds: for every open cover $\{U_i\}$ of *X*, and a collection of elements $\alpha_i \in F(U_i)$ that agree on the overlaps $U_i \cap U_j$ (that is, the restriction of α_i and α_j to $U_i \cap U_j$ are equal), there is a unique $\alpha \in F(X)$ that restricts to α_i on U_i .

A functor of the form $h_Y = \text{Maps}(-, Y)$ clearly satisfies the sheaf condition. Indeed, a map $X \rightarrow Y$ is uniquely specified by specifying it on an open cover, compatibly on the overlaps. So, first and foremost, a representable functor must necessarily be a sheaf.

Secondly, a scheme is covered locally by affine schemes. We now extend the notion of an open cover to a functor. To this end, we first generalize the construction of fiber products to functors.

Definition 11. Let $f: F \to H$ and $g: G \to H$ be natural transformations between functors from a category to <u>Sets</u>. Define the *fiber product* $F \times_H G$ by

$$
F \times_H G(S) = F(S) \times_{H(S)} G(S) = \{(a, b) \mid a \in F(S), b \in G(s), \text{ and } f(a) = g(b)\}.
$$

Notice that when F , G , and H are representable, then $F \times_H G$ is also representable, and the representing scheme is the usual fiber product.

Definition 12. Let $f : F \to G$ be a map between functors from Schemes to Sets. We say that f is an open immersion if for every scheme *X* and map $h_X \to G$, the fibered product $h_X \times_G F$ has the form h_Y for some *Y* and the map $Y \to X$ given by $h_X \times_G F \to h_X$ is an open immersion.

We say that a collection of maps ${F_i \rightarrow G}$ is an *open covering* if each $F_i \rightarrow G$ is an open immersion and for every field *K*, the map $\bigcup F_i(K) \to G(K)$ is surjective.

Proposition 13. *Let F be a contravariant functor from Schemes to Sets. Then F is representable if and only if F is a sheaf in the Zariski topology and has an open covering* $\{h_{X_i} \to F\}$ *.*

Proof sketch. Consider $X_{i,j} = X_i \times_F X_j$. Both $X_{i,j} \to X_i$ and $X_{i,j} \to X_j$ are open immersions. Let their images be the open subschemes $X_i^j \subset X_i$ and $X_i^j \subset X_j$. The identifications $X_{i,j} \to X_i^j$ i ^{$'$} and $\phi_{i,j}: X^i_j \to X^j_i$ $X_{i,j} \rightarrow X_i^i$ i_i . One checks that these gluing morphisms satisfy the compatibility $\phi_{i,j} \circ \phi_{j,k} = \phi_{i,k}$ on triple overlaps. So we can glue the X_i along the open sets *X i j* using these isomorphisms and get a scheme *X* that represents the functor *F*. \Box **Proposition 14.** *The Grassmannian functor* Sub*r*,*ⁿ is a sheaf in the Zariski topology.*

Proof. Exercise.

Finally, we must produce an open cover of the Grassmannian functor. For a subset *I* ⊂ $\{1, \ldots, n\}$ of size *r*, define the functor Sub^{*I*}_{*r*,*n*} by

 $\text{Sub}_{r,n}^I(X) = \text{{Sub-bundles }} F_i \subset O_X^n$ $\frac{n}{X}$ such that the projection $F_i \to O_X^D$ $\frac{N}{X}$ is an iso.}

Here $O_X^n \to O_X^l$ $\frac{N}{X}$ is the projection onto the *r* coordinates given by *I*.

Proposition 15. *The collection* $\{Sub_{r,n}^I \to Sub_{r,n}\}_I$ *is an open cover.*

Proof. Let us first show that $\text{Sub}_{r,n}^I \to \text{Sub}_{r,n}$ is an open immersion. Consider a map $h_X \to$ Sub_{r,n}. By Yoneda's lemma, such a map is equivalent to an element $[F \subset O_X^n]$ $\binom{n}{X}$ of $\text{Sub}_{r,n}^I(X)$. We have to compute the fiber product $H^I = X \times_{\text{Sub}_{r,n}} \text{Sub}_{r,n}$. A map from *Y* to this fiber product is equivalent to an element of

$$
h_X(Y) \times_{\mathrm{Sub}_{r,n}(Y)} \mathrm{Sub}_{r,n}^I(Y),
$$

namely to a map $\phi: Y \to X$ and an element $[F_Y \subset O_Y^n]$ \int_{Y}^{n}] of Sub $_{r,n}^{I}(Y)$ such that the two elements of $\text{Sub}_{r,n}(Y)$ obtained from ϕ and $[F_Y \subset O_Y^n]$ $Y_Y^{\{n\}}$ are the same. Since $[F_Y \subset O_Y^n]$ $\binom{n}{Y}$ is an element of $\text{Sub}_{r,n}^I(Y)$, the projection $F_Y \to O_Y^I$ $\frac{d}{dY}$ is an isomorphism. The element of $\mathsf{Sub}_{r,n}(Y)$ obtained from $\left[F_Y \subset O_Y^n\right]$ $\left[\begin{array}{c} n \\ Y \end{array} \right]$ is just $\left[\begin{array}{c} F_Y \subset O_Y^n \end{array} \right]$ *Y*]. The element of Sub*r*,*ⁿ* (*Y*) obtained from *φ* is the pullback $\left[\phi^*F\subset O_Y^n\right]$ *Y*]. We can thus rephrase the fiber product as

$$
H^{I}(Y) = \{ \phi : Y \to X \mid \phi^* F \to O_Y^I \text{ is an isomorphism.} \}.
$$

Consider the projection $F \to O^I$ *X*^{*I*}. The set *x* ∈ *X* such that $F|_x$ → O_X^I $\int_X^I \vert_x$ is an isomorphism is an open subset U^I of X (why?). Then

$$
H^{I}(Y) = \{ \phi : Y \to X \mid \phi(Y) \subset X \} = \{ \phi : Y \to U^{I} \}.
$$

Thus H^I is represented by U^I .

Showing that the collection $\text{Sub}_{r,n}^I$ covers $\text{Sub}_{r,n}$ is easy.

We finish the construction of the Grassmannian by showing that the subfunctors $\text{Sub}_{r,n}^I$ are representable.

Proposition 16. *The subfunctors* $\text{Sub}_{r,n}^I$ *are represented by* $\mathbf{A}^{r(n-r)}$ *.*

Proof. Let *X* be a scheme and an element $[F \subset O_X^n]$ \int_X^n of Sub $\int_{r,n}^n$ (*X*). Then, by definition, the projection $\pi: F \to O^I$ $\frac{d}{dx}$ is an isomorphism. Let $i: O_X^I \to O_X^n$ $\frac{n}{X}$ be the standard inclusion. Consider the map $\phi = \pi^{-1} - \hat{i}$; $O_X^I \rightarrow O_X^n$ α_X^n . Then its projection onto O^I_X $\frac{N}{X}$ is zero, and hence it lands in $O_X^{I^c}$ x^{\prime} . Thus, from $X \to \text{Sub}_{r,n}^I$, we get a map between the two trivial vector bundles $O_X^I \to O_X^{I^c}$ \int_X^T . Such a map is given by an $r \times (n - r)$ matrix, and hence is the same as a map $X \to \mathbf{A}^{r(n-r)}$.

 \Box

 \Box

Conversely, given a map $X \to \mathbf{A}^{r(n-r)}$, we interpret it as an $r \times (n-r)$ matrix with entries in O_X , and hence as a map $\phi: O_X^I \to O_X^{I^c}$ X^c . We let $F = O_X^T$ *X* and construct an inclusion $F \to O_X^n =$ $O_X^I \oplus O_X^{I^c}$ \int_X^L by

$$
v\mapsto (v,\phi(v)).
$$

The resulting $[F \subset O_X^n]$ \int_X^n] gives a map $X \to \text{Sub}_{r,n}^I$.

It is easy to verify that these two constructions are mutually inverse and give a natural bijection between $\text{Maps}(X, \mathbf{A}^{r(n-r})$ and $\text{Sub}_{r,n}^I(X)$. Thus, $\text{Sub}_{r,n}^I$ is represented by $\mathbf{A}^{r(n-r)}$. \Box

Our proof of [Theorem 7](#page-2-1) produced a Zariski open cover of **Gr**(*r*, *n*). Any property of a scheme that is local in the Zariski topology can be checked by checking it on the open cover. For example, we see immediately that $\mathbf{Gr}(r, n)$ is smooth of dimension $r(n - r)$. But how can we get more information? It turns out that a lot of properties of the representing scheme can be read off from the functor itself. We end by mentioning two examples, one global and one local.

Let *F* be a functor represented by a scheme *X* of finite type. The following proposition gives a criterion for *X* to be separated/proper in terms of *F*.

Proposition 17 (Valuative criteria of separatedness and properness)**.** *X is separated (resp. proper) if and only if for every DVR R with fraction field K, the map* $F(Spec K) \rightarrow F(Spec R)$ *induced by the inclusion Spec K* \rightarrow Spec *R is an injection (resp. bijection).*

The following proposition recovers the Zariski tangent space of *X* from the functor *F*.

Proposition 18. *Let* $x \in F(k)$ *be a k point of X. Define*

$$
T_x F = \{ \xi \in F(\operatorname{Spec} k[\epsilon]/\epsilon^2) \mid \xi_0 \in F(k) \text{ is } x \},
$$

 ϵ *where* ξ_0 *is the image of* ξ *in F*(*k*) under the map induced by the inclusion Spec k \rightarrow Spec $k[\epsilon]/\epsilon^2$. *Then we have a bijection* $T_x F \cong T_x X$.

Exercises

- 1. Show that the following functors are representable and find the scheme that represents them. The functors are described by their action on schemes; their action on morphisms should be easy to infer.
	- (a) $A(X) = \Gamma(X, O_X)$ (the set of global regular functions)
	- (b) $B(X) = \Gamma(X, O_X^*)$ (the set of invertible global regular functions)
	- (c) $C_n(X) = \{f \in \Gamma(X, O_X) \mid f^n = 1\}.$
- 2. In [Proposition 18,](#page-5-0) can you read off the vector space structure on T_xF from the functor?
- 3. Let *V* be a *k* vector space and $x \in \text{Gr}(r, V)$ be the *k* point corresponding to an *r*dimensional subspace $S \subset V$. Let $Q = S/V$. Using the functorial description of $\mathbf{Gr}(r, V)$ and [Proposition 18,](#page-5-0) construct an isomorphism

$$
T_x\mathbf{Gr}(r,V)\cong \mathrm{Hom}(S,Q).
$$

- 4. Use [Proposition 17](#page-5-1) to prove that **Gr**(*r*, *V*) is proper.
- 5. Let *V* be a vector bundle on a scheme *X*. Make sense of **Gr**(*r*, *V*), the relative Grassmannian, as a functor. Then show that it is representable (with minimal work). The result $\mathbf{Gr}(r, V)$ should map to *X* and its fiber over $x \in X$ should be the Grassmannian $\mathbf{Gr}(r, V|_x).$
- 6. Construct the natural transformations between the functors of points of various $Pⁿ$ that correspond to the Veronese and Segre maps.
- 7. Construct the natural transformation that corresponds to the Plücker embedding of a Grassmannian.
- 8. Let $n \geq 1$ be a integer. Consider the functor

 $F(X) = \{ S \subset \mathbf{P}^1 \times X \mid S \to X \text{ is finite and flat of degree } n \}.$

Show that F is represented by P^n . What if we replace 'flat' by 'etale'? To get a sense of the functor, look at the 'geometric points' of the functor, namely the elements of $F(k)$, where k is an algebraically closed field.

Reference for this section [[EH00,](#page-6-0) Chapter VI].

References

[EH00] David Eisenbud and Joe Harris, *The geometry of schemes*, Graduate Texts in Mathematics, vol. 197, Springer-Verlag, New York, 2000. MR 1730819 (2001d:14002)