Schemes and functors

Anand Deopurkar

Example 1. Let *V* be an *n* dimensional vector space over a field *k*. The set of one dimensional subspaces of *V* corresponds bijectively to the points of the projective space **P***V*. More generally, the set of *r* dimensional subspaces of *V* corresponds bijectively to the points of the Grassmannian $\mathbf{Gr}(r, V)$.

Example 2. Consider the set of hypersurfaces of degree *d* in a fixed projective space \mathbf{P}^n . Using the homogeneous coordinates $[X_0 : \cdots : X_n]$, we can describe a hypersurface by an equation

$$\sum_{i_1+\cdots+i_n=d} a_{i_1,\ldots,i_n} X_0^{i_1}\cdots X_n^{i_n}$$

So a hypersurface can be specified by a system of $\binom{n+d}{d}$ coefficients $a_{i_1,...,i_d}$, subject to the restriction that not all of them are zero, and with the understanding that scaling all of them by the same non-zero constant gives the same hypersurface. Therefore, the set of hypersurfaces of degree *d* in \mathbf{P}^n corresponds bijectively to the points of \mathbf{P}^N , where $N = \binom{n+d}{d}$.

Example 3. Let *C* be a smooth projective curve of genus *g* over **C**. Consider the set of line bundles of degree zero on *C*. A line bundle may be specified by an open cover $\{U_i\}$ of *C*, and transition functions $g_{i,j}: U_i \cap U_j \to \mathbf{C}^*$ satisfying $g_{i,j} \circ g_{j,k} = g_{i,k}$ on $U_i \cap U_j \cap U_k$. A function $U_i \cap U_j \to \mathbf{C}^*$ is simply an element of O_C^* on $U_i \cap U_j$. In this way, a line bundle gives a Cěch 1-cocycle for the sheaf O_C^* on $\{U_i\}$. It is easy to check that the two cocycles obtained from two isomorphic line bundles differ only by a Cěch coboundary. We thus get a map from the set of line bundles on *C* to $H^1(C, O_C^*)$.

On the other hand, given an element of $H^1(C, O_C^*)$, we may represent it by a Cěch cocycle $g_{i,j}$ on some covering $\{U_i\}$ of *C*. Using the $g_{i,j}$ as transition functions, we can then construct a line bundle. It is easy to check that two cocycles that differ by a coboundary give isomorphic line bundles. We thus get a map from $H^1(C, O_C^*)$ to the set of line bundles on *C*.

The two maps constructed above are mutual inverses. So we may identify the set of line bundles on *C* with $H^1(C, O_C^*)$.

Now consider the exponential exact sequence of analytic sheaves on C

$$0 \to \mathbf{Z} \to O_C \to O_C^* \to 0,$$

where $O_C \to O_C^*$ is given by $f \mapsto \exp(2\pi i f)$. The induced map $H^1(C, O_C^*) \to H^2(C, \mathbf{Z}) = \mathbf{Z}$ is the degree map. The line bundles of degree zero, therefore, correspond bijectively to the quotient $H^1(C, O_C)/H^1(C, \mathbf{Z})$.

We have $H^1(C, O_C) \cong \mathbb{C}^g$ and $H^1(C, \mathbb{Z}) \cong \mathbb{Z}^{2g}$. Furthermore, $H^1(C, \mathbb{Z}) \subset H^1(C, O_C)$ exhibits $H^1(C, \mathbb{Z})$ as a lattice in $H^1(C, O_C)$. As a result, the quotient is topologically a torus $(S^1)^{2g}$. By construction, it is also a complex manifold. It turns out that it actually has the structure of an algebraic variety.

In any case, the set of line bundles of degree zero on *C* corresponds bijectively to the points of a (topological) torus, or a complex manifold, or (taking the last statement on faith) a complex algebraic variety.

The examples above show that many sets of algebro-geometric objects are in bijection with points of an algebraic variety. In some sense, such a variety *parametrize* those algebro-geometric objects. We often say that it is the *moduli space* of those objects.

Let us take the example of a Grassmannian. We want to say that the Grassmannian Gr(r, n) is the moduli space of r dimensional subspaces of an n dimensional space. To give content to this statement, we must define our terms.

Definition 4 (Attempt 1). The moduli space of r dimensional subspaces of an n dimensional vector space is a scheme G whose k-points are in bijection with the set of r dimensional subspaces of k^n .

This definition is almost useless. Many schemes satisfy this definition (so, in particular, our article "the" is grossly misplaced.) Indeed, if we take k = C, then the set of points of any non-finite scheme over **C** is in some bijection with the set of *r* dimensional subspaces of k^n , simply because these are two sets of the same cardinality.

One way to inject some content into the definition is to remember that k points of a scheme are just maps from Spec k to the scheme. We then look at maps not just from Spec k but also from other schemes X. Given a map $\phi: X \to \mathbf{Gr}(r, n)$, the subspaces $\phi(x)$ give us a family of r-dimensional subspaces of an n dimensional, parametrized by the points of X. If ϕ is an algebraic map, then the resulting family of subspaces ought to be varying algebraically (whatever that means). Conversely, given an algebraically varying family of r-dimensional subspaces of an n dimensional vector space parametrized by X, we ought to get an algebraic map $X \to \mathbf{Gr}(r, n)$. It is easy to formalize the notion of an algebraically varying family of rdimensional subspaces of V parametrized by X. Such a family should simply be an (algebraic) sub vector bundle of rank r of the trivial vector bundle O_X^n . We now upgrade our previous attempted definition.

Denote by $\operatorname{Sub}_{r,n}(X)$ the set of rank *r* sub vector bundles of O_X^n .

Remark 1. The notion of a sub vector bundle of a vector bundle is slightly tricky. A sub vector bundle of O_X^n is *not the same* as a locally free subsheaf of O_X^n . For the correct notion of a sub vector bundle, convince yourself of the following. Let *E* be a locally free sheaf and $F \subset E$ a subsheaf. Then the following are equivalent.

1. for every $x \in X$, the map on the fibers $F|_x \to E|_x$ is injective.

2. *F* and E/F are locally free.

We say that $F \subset E$ is a sub vector bundle if it satisfies these conditions.

Definition 5 (Attempt 2). The moduli space of *r* dimensional subspaces of an *n* dimensional vector space is a scheme *G* for which we have a bijection i_X : Maps $(X, G) \rightarrow \text{Sub}_{r,n}(X)$ for all schemes *X*.

This appears better, but on a second thought we realize that we are requiring bijections between (many pairs of) two sets, which are very likely of the same size. However, we do not want arbitrary bijections; we want bijections that are compatible with morphisms. Indeed, suppose we have a map $\phi: X \to Y$. Then the correspondence $i_X: \operatorname{Maps}(X, G) \to \operatorname{Sub}_{r,n}(X)$ and $i_Y: \operatorname{Maps}(Y, G) \to \operatorname{Sub}_{r,n}(Y)$ must be such that

$$i_X(f \circ \phi) = \phi^* i_Y(f). \tag{1}$$

In other words, the family of subspaces on *X* obtained from the map $f \circ \phi$ must be the pullback (via ϕ) of the family on *Y* obtained from *f*.

Said more formally, we define a contravariant functor from the category <u>Schemes</u> to the category <u>Sets</u> by the rule that sends a scheme *X* to the set Maps(X, G) and a morphism $\phi: X \to Y$ to the function $Maps(Y, G) \to Maps(X, G)$ defined by $f \mapsto \phi \circ f$. Similarly, we define a functor $Sub_{r,n}(-)$ by the rule that sends a scheme *X* to $Sub_{r,n}(X)$ and a morphism $\phi: X \to Y$ to the pullback map ϕ^* : $Sub_{r,n}(Y) \to Sub_{r,n}(X)$. Saying that there exist bijections $i_X: Maps(X, G) \to Sub_{r,n}(X)$ for all *X* that satisfy (1) is the same as saying that there exists a natural isomorphism between the two functors Maps(-, G) and $Sub_{r,n}(-)$.

Definition 6. The moduli space of *r* dimensional subspaces of an *n* dimensional space is a scheme *G* such that the functor Maps(-, G) is naturally isomorphic to the functor $Sub_{r,n}(-)$.

Having defined our terms, we can state our theorem.

Theorem 7. There exists a scheme Gr(r, n) with a natural isomorphism of functors

 $Maps(-, Gr(r, n)) \cong Sub_{r,n}(-).$

The above procedure illustrates how we will formulate the claim that a certain scheme is the moduli space of a certain class of objects.

Definition 8. Let <u>C</u> be a category. If a contravariant functor $F: \underline{C} \rightarrow \underline{Sets}$ is isomorphic to the functor Maps(-, X) for some object X of <u>C</u>, then we say that X represents F.

Yoneda's lemma guarrantees that if a representing object *X* exists, then it is unique.

Proposition 9 (Yoneda's lemma). Let \underline{C} be any category, X an object of \underline{C} , and $F: \underline{C} \rightarrow \underline{Sets}$ a contravariant functor.

1. There is a bijection

{*Natural transformations from* Maps
$$(-,X)$$
 to F } \leftrightarrow $F(X)$.

2. In particular, if Y is another object of C, then there is a bijection

{*Natural transformations from* Maps(-, X) *to* Maps(-, Y)} \leftrightarrow Maps(X, Y).

In particular, a natural isomorphism from Maps(-, X) to Maps(-, Y) gives an isomorphism from X to Y.

Let us now prove Theorem 7. We will phrase the proof in the language that emphasizes the functorial point of view. For brevity, we will denote the functor Maps(-, Y) by h_Y . It is often called the *functor of points* of *Y* (because when we put Spec*R* in the place of –, we get the set of *R*-valued points of *Y*).

Definition 10. Let *F* be a contravariant functor from <u>Schemes</u> to <u>Sets</u>. We say that *F* is a *sheaf* (in the Zariski topology), if for every scheme *X* the following holds: for every open cover $\{U_i\}$ of *X*, and a collection of elements $\alpha_i \in F(U_i)$ that agree on the overlaps $U_i \cap U_j$ (that is, the restriction of α_i and α_j to $U_i \cap U_j$ are equal), there is a unique $\alpha \in F(X)$ that restricts to α_i on U_i .

A functor of the form $h_Y = \text{Maps}(-, Y)$ clearly satisfies the sheaf condition. Indeed, a map $X \to Y$ is uniquely specified by specifying it on an open cover, compatibly on the overlaps. So, first and foremost, a representable functor must necessarily be a sheaf.

Secondly, a scheme is covered locally by affine schemes. We now extend the notion of an open cover to a functor. To this end, we first generalize the construction of fiber products to functors.

Definition 11. Let $f : F \to H$ and $g : G \to H$ be natural transformations between functors from a category to <u>Sets</u>. Define the *fiber product* $F \times_H G$ by

$$F \times_H G(S) = F(S) \times_{H(S)} G(S) = \{(a, b) \mid a \in F(S), b \in G(s), and f(a) = g(b)\}.$$

Notice that when *F*, *G*, and *H* are representable, then $F \times_H G$ is also representable, and the representing scheme is the usual fiber product.

Definition 12. Let $f : F \to G$ be a map between functors from <u>Schemes</u> to <u>Sets</u>. We say that f is an open immersion if for every scheme X and map $h_X \to G$, the fibered product $h_X \times_G F$ has the form h_Y for some Y and the map $Y \to X$ given by $h_X \times_G F \to h_X$ is an open immersion.

We say that a collection of maps $\{F_i \to G\}$ is an *open covering* if each $F_i \to G$ is an open immersion and for every field K, the map $\bigcup F_i(K) \to G(K)$ is surjective.

Proposition 13. Let *F* be a contravariant functor from <u>Schemes</u> to <u>Sets</u>. Then *F* is representable if and only if *F* is a sheaf in the Zariski topology and has an open covering $\{h_{X_i} \rightarrow F\}$.

Proof sketch. Consider $X_{i,j} = X_i \times_F X_j$. Both $X_{i,j} \to X_i$ and $X_{i,j} \to X_j$ are open immersions. Let their images be the open subschemes $X_i^j \subset X_i$ and $X_i^j \subset X_j$. The identifications $X_{i,j} \to X_i^j$ and $X_{i,j} \to X_j^i$ give an isomorphism $\phi_{i,j} \colon X_j^i \to X_i^j$. One checks that these gluing morphisms satisfy the compatibility $\phi_{i,j} \circ \phi_{j,k} = \phi_{i,k}$ on triple overlaps. So we can glue the X_i along the open sets X_i^i using these isomorphisms and get a scheme X that represents the functor F.

Proposition 14. The Grassmannian functor $Sub_{r,n}$ is a sheaf in the Zariski topology.

Proof. Exercise.

Finally, we must produce an open cover of the Grassmannian functor. For a subset $I \subset \{1, ..., n\}$ of size r, define the functor $\operatorname{Sub}_{rn}^{I}$ by

$$\operatorname{Sub}_{r_n}^I(X) = \{\operatorname{Sub-bundles} F_i \subset O_X^n \text{ such that the projection } F_i \to O_X^I \text{ is an iso.} \}$$

Here $O_x^n \to O_x^I$ is the projection onto the *r* coordinates given by *I*.

Proposition 15. The collection $\{\operatorname{Sub}_{r,n}^{I} \to \operatorname{Sub}_{r,n}\}_{I}$ is an open cover.

Proof. Let us first show that $\operatorname{Sub}_{r,n}^{I} \to \operatorname{Sub}_{r,n}$ is an open immersion. Consider a map $h_{X} \to \operatorname{Sub}_{r,n}$. By Yoneda's lemma, such a map is equivalent to an element $[F \subset O_{X}^{n}]$ of $\operatorname{Sub}_{r,n}^{I}(X)$. We have to compute the fiber product $H^{I} = X \times_{\operatorname{Sub}_{r,n}} \operatorname{Sub}_{r,n}^{I}$. A map from Y to this fiber product is equivalent to an element of

$$h_X(Y) \times_{\operatorname{Sub}_{r,n}(Y)} \operatorname{Sub}_{r,n}^I(Y),$$

namely to a map $\phi: Y \to X$ and an element $[F_Y \subset O_Y^n]$ of $\operatorname{Sub}_{r,n}^I(Y)$ such that the two elements of $\operatorname{Sub}_{r,n}(Y)$ obtained from ϕ and $[F_Y \subset O_Y^n]$ are the same. Since $[F_Y \subset O_Y^n]$ is an element of $\operatorname{Sub}_{r,n}^I(Y)$, the projection $F_Y \to O_Y^I$ is an isomorphism. The element of $\operatorname{Sub}_{r,n}(Y)$ obtained from $[F_Y \subset O_Y^n]$ is just $[F_Y \subset O_Y^n]$. The element of $\operatorname{Sub}_{r,n}(Y)$ obtained from ϕ is the pullback $[\phi^*F \subset O_Y^n]$. We can thus rephrase the fiber product as

$$H^{I}(Y) = \{\phi: Y \to X \mid \phi^{*}F \to O_{Y}^{I} \text{ is an isomorphism.}\}.$$

Consider the projection $F \to O_X^I$. The set $x \in X$ such that $F|_x \to O_X^I|_x$ is an isomorphism is an open subset U^I of X (why?). Then

$$H^{I}(Y) = \{ \phi : Y \to X \mid \phi(Y) \subset X \} = \{ \phi : Y \to U^{I} \}.$$

Thus H^I is represented by U^I .

Showing that the collection $\operatorname{Sub}_{r,n}^{I}$ covers $\operatorname{Sub}_{r,n}$ is easy.

We finish the construction of the Grassmannian by showing that the subfunctors $Sub_{r,n}^{l}$ are representable.

Proposition 16. The subfunctors $\operatorname{Sub}_{r,n}^{I}$ are represented by $\mathbf{A}^{r(n-r)}$.

Proof. Let *X* be a scheme and an element $[F \subset O_X^n \text{ of } \operatorname{Sub}_{r,n}^I(X)$. Then, by definition, the projection $\pi: F \to O_X^I$ is an isomorphism. Let $i: O_X^I \to O_X^n$ be the standard inclusion. Consider the map $\phi = \pi^{-1} - i: O_X^I \to O_X^n$. Then its projection onto O_X^I is zero, and hence it lands in $O_X^{I^c}$. Thus, from $X \to \operatorname{Sub}_{r,n}^I$, we get a map between the two trivial vector bundles $O_X^I \to O_X^{I^c}$. Such a map is given by an $r \times (n - r)$ matrix, and hence is the same as a map $X \to \mathbf{A}^{r(n-r)}$.

Conversely, given a map $X \to \mathbf{A}^{r(n-r)}$, we interpret it as an $r \times (n-r)$ matrix with entries in O_X , and hence as a map $\phi : O_X^I \to O_X^{I^c}$. We let $F = O_X^I$ and construct an inclusion $F \to O_X^n = O_X^I \oplus O_X^{I^c}$ by

$$v \mapsto (v, \phi(v)).$$

The resulting $[F \subset O_X^n]$ gives a map $X \to \operatorname{Sub}_{rn}^I$.

It is easy to verify that these two constructions are mutually inverse and give a natural bijection between $Maps(X, \mathbf{A}^{r(n-r)})$ and $Sub_{r,n}^{I}(X)$. Thus, $Sub_{r,n}^{I}$ is represented by $\mathbf{A}^{r(n-r)}$.

Our proof of Theorem 7 produced a Zariski open cover of $\mathbf{Gr}(r, n)$. Any property of a scheme that is local in the Zariski topology can be checked by checking it on the open cover. For example, we see immediately that $\mathbf{Gr}(r, n)$ is smooth of dimension r(n - r). But how can we get more information? It turns out that a lot of properties of the representing scheme can be read off from the functor itself. We end by mentioning two examples, one global and one local.

Let F be a functor represented by a scheme X of finite type. The following proposition gives a criterion for X to be separated/proper in terms of F.

Proposition 17 (Valuative criteria of separatedness and properness). *X* is separated (resp. proper) if and only if for every DVR R with fraction field K, the map $F(\text{Spec}K) \rightarrow F(\text{Spec}R)$ induced by the inclusion $\text{Spec}K \rightarrow \text{Spec}R$ is an injection (resp. bijection).

The following proposition recovers the Zariski tangent space of X from the functor F.

Proposition 18. Let $x \in F(k)$ be a k point of X. Define

$$T_x F = \{\xi \in F(\operatorname{Spec} k[\epsilon]/\epsilon^2) \mid \xi_0 \in F(k) \text{ is } x\},\$$

where ξ_0 is the image of ξ in F(k) under the map induced by the inclusion $\operatorname{Spec} k \to \operatorname{Spec} k[\epsilon]/\epsilon^2$. Then we have a bijection $T_x F \cong T_x X$.

Exercises

- 1. Show that the following functors are representable and find the scheme that represents them. The functors are described by their action on schemes; their action on morphisms should be easy to infer.
 - (a) $A(X) = \Gamma(X, O_X)$ (the set of global regular functions)
 - (b) $B(X) = \Gamma(X, O_X)^*$ (the set of invertible global regular functions)
 - (c) $C_n(X) = \{ f \in \Gamma(X, O_X) \mid f^n = 1 \}.$
- 2. In Proposition 18, can you read off the vector space structure on $T_x F$ from the functor?
- 3. Let *V* be a *k* vector space and $x \in \mathbf{Gr}(r, V)$ be the *k* point corresponding to an *r*-dimensional subspace $S \subset V$. Let Q = S/V. Using the functorial description of $\mathbf{Gr}(r, V)$ and Proposition 18, construct an isomorphism

$$T_{x}\mathbf{Gr}(r, V) \cong \mathrm{Hom}(S, Q).$$

- 4. Use Proposition 17 to prove that Gr(r, V) is proper.
- 5. Let *V* be a vector bundle on a scheme *X*. Make sense of $\mathbf{Gr}(r, V)$, the relative Grassmannian, as a functor. Then show that it is representable (with minimal work). The result $\mathbf{Gr}(r, V)$ should map to *X* and its fiber over $x \in X$ should be the Grassmannian $\mathbf{Gr}(r, V|_x)$.
- 6. Construct the natural transformations between the functors of points of various \mathbf{P}^n that correspond to the Veronese and Segre maps.
- 7. Construct the natural transformation that corresponds to the Plücker embedding of a Grassmannian.
- 8. Let $n \ge 1$ be a integer. Consider the functor

 $F(X) = \{S \subset \mathbf{P}^1 \times X \mid S \to X \text{ is finite and flat of degree } n\}.$

Show that *F* is represented by \mathbf{P}^n . What if we replace 'flat' by 'etale'? To get a sense of the functor, look at the 'geometric points' of the functor, namely the elements of *F*(*k*), where *k* is an algebraically closed field.

Reference for this section [EH00, Chapter VI].

References

[EH00] David Eisenbud and Joe Harris, *The geometry of schemes*, Graduate Texts in Mathematics, vol. 197, Springer-Verlag, New York, 2000. MR 1730819 (2001d:14002)