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Example 1. Let V be an n dimensional vector space over a field k. The set of one dimen-
sional subspaces of V corresponds bijectively to the points of the projective space PV . More
generally, the set of r dimensional subspaces of V corresponds bijectively to the points of the
Grassmannian Gr(r, V ).

Example 2. Consider the set of hypersurfaces of degree d in a fixed projective space Pn. Using
the homogeneous coordinates [X0 : · · · : Xn], we can describe a hypersurface by an equation

∑

i1+···+in=d

ai1,...,in X i1
0 · · ·X

in
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So a hypersurface can be specified by a system of
�n+d

d

�

coefficients ai1,...,id , subject to the
restriction that not all of them are zero, and with the understanding that scaling all of them by
the same non-zero constant gives the same hypersurface. Therefore, the set of hypersurfaces
of degree d in Pn corresponds bijectively to the points of PN , where N =

�n+d
d

�

.

Example 3. Let C be a smooth projective curve of genus g over C. Consider the set of line
bundles of degree zero on C . A line bundle may be specified by an open cover {Ui} of C , and
transition functions gi, j : Ui ∩ U j → C∗ satisfying gi, j ◦ g j,k = gi,k on Ui ∩ U j ∩ Uk. A function
Ui ∩ U j → C∗ is simply an element of O∗C on Ui ∩ U j. In this way, a line bundle gives a Cěch
1-cocycle for the sheaf O∗C on {Ui}. It is easy to check that the two cocycles obtained from two
isomorphic line bundles differ only by a Cěch coboundary. We thus get a map from the set of
line bundles on C to H1(C , O∗C).

On the other hand, given an element of H1(C , O∗C), we may represent it by a Cěch cocycle
gi, j on some covering {Ui} of C . Using the gi, j as transition functions, we can then construct a
line bundle. It is easy to check that two cocycles that differ by a coboundary give isomorphic
line bundles. We thus get a map from H1(C , O∗C) to the set of line bundles on C .

The two maps constructed above are mutual inverses. So we may identify the set of line
bundles on C with H1(C , O∗C).

Now consider the exponential exact sequence of analytic sheaves on C

0→ Z→ OC → O∗C → 0,

where OC → O∗C is given by f 7→ exp(2πi f ). The induced map H1(C , O∗C) → H2(C ,Z) = Z
is the degree map. The line bundles of degree zero, therefore, correspond bijectively to the
quotient H1(C , OC)/H1(C ,Z).
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We have H1(C , OC) ∼= Cg and H1(C ,Z) ∼= Z2g . Furthermore, H1(C ,Z) ⊂ H1(C , OC) exhibits
H1(C ,Z) as a lattice in H1(C , OC). As a result, the quotient is topologically a torus (S1)2g . By
construction, it is also a complex manifold. It turns out that it actually has the structure of an
algebraic variety.

In any case, the set of line bundles of degree zero on C corresponds bijectively to the
points of a (topological) torus, or a complex manifold, or (taking the last statement on faith)
a complex algebraic variety.

The examples above show that many sets of algebro-geometric objects are in bijection
with points of an algebraic variety. In some sense, such a variety parametrize those algebro-
geometric objects. We often say that it is the moduli space of those objects.

Let us take the example of a Grassmannian. We want to say that the Grassmannian Gr(r, n)
is the moduli space of r dimensional subspaces of an n dimensional space. To give content to
this statement, we must define our terms.

Definition 4 (Attempt 1). The moduli space of r dimensional subspaces of an n dimensional
vector space is a scheme G whose k-points are in bijection with the set of r dimensional
subspaces of kn.

This definition is almost useless. Many schemes satisfy this definition (so, in particular,
our article “the” is grossly misplaced.) Indeed, if we take k = C, then the set of points of any
non-finite scheme over C is in some bijection with the set of r dimensional subspaces of kn,
simply because these are two sets of the same cardinality.

One way to inject some content into the definition is to remember that k points of a scheme
are just maps from Spec k to the scheme. We then look at maps not just from Spec k but also
from other schemes X . Given a map φ : X → Gr(r, n), the subspaces φ(x) give us a family
of r-dimensional subspaces of an n dimensional, parametrized by the points of X . If φ is
an algebraic map, then the resulting family of subspaces ought to be varying algebraically
(whatever that means). Conversely, given an algebraically varying family of r-dimensional
subspaces of an n dimensional vector space parametrized by X , we ought to get an algebraic
map X → Gr(r, n). It is easy to formalize the notion of an algebraically varying family of r-
dimensional subspaces of V parametrized by X . Such a family should simply be an (algebraic)
sub vector bundle of rank r of the trivial vector bundle On

X . We now upgrade our previous
attempted definition.

Denote by Subr,n(X ) the set of rank r sub vector bundles of On
X .

Remark 1. The notion of a sub vector bundle of a vector bundle is slightly tricky. A sub vector
bundle of On

X is not the same as a locally free subsheaf of On
X . For the correct notion of a sub

vector bundle, convince yourself of the following. Let E be a locally free sheaf and F ⊂ E a
subsheaf. Then the following are equivalent.

1. for every x ∈ X , the map on the fibers F |x → E|x is injective.
2. F and E/F are locally free.

We say that F ⊂ E is a sub vector bundle if it satisfies these conditions.
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Definition 5 (Attempt 2). The moduli space of r dimensional subspaces of an n dimensional
vector space is a scheme G for which we have a bijection iX : Maps(X , G)→ Subr,n(X ) for all
schemes X .

This appears better, but on a second thought we realize that we are requiring bijections
between (many pairs of) two sets, which are very likely of the same size. However, we do not
want arbitrary bijections; we want bijections that are compatible with morphisms. Indeed,
suppose we have a map φ : X → Y . Then the correspondence iX : Maps(X , G) → Subr,n(X )
and iY : Maps(Y, G)→ Subr,n(Y ) must be such that

iX ( f ◦φ) = φ∗iY ( f ). (1)

In other words, the family of subspaces on X obtained from the map f ◦φ must be the pullback
(via φ) of the family on Y obtained from f .

Said more formally, we define a contravariant functor from the category Schemes to the
category Sets by the rule that sends a scheme X to the set Maps(X , G) and a morphism
φ : X → Y to the function Maps(Y, G) → Maps(X , G) defined by f 7→ φ ◦ f . Similarly, we
define a functor Subr,n(−) by the rule that sends a scheme X to Subr,n(X ) and a morphism
φ : X → Y to the pullback map φ∗ : Subr,n(Y )→ Subr,n(X ). Saying that there exist bijections
iX : Maps(X , G)→ Subr,n(X ) for all X that satisfy (1) is the same as saying that there exists a
natural isomorphism between the two functors Maps(−, G) and Subr,n(−).

Definition 6. The moduli space of r dimensional subspaces of an n dimensional space is a
scheme G such that the functor Maps(−, G) is naturally isomorphic to the functor Subr,n(−).

Having defined our terms, we can state our theorem.

Theorem 7. There exists a scheme Gr(r, n) with a natural isomorphism of functors

Maps(−,Gr(r, n))∼= Subr,n(−).

The above procedure illustrates how we will formulate the claim that a certain scheme is
the moduli space of a certain class of objects.

Definition 8. Let C be a category. If a contravariant functor F : C→ Sets is isomorphic to the
functor Maps(−, X ) for some object X of C, then we say that X represents F .

Yoneda’s lemma guarrantees that if a representing object X exists, then it is unique.

Proposition 9 (Yoneda’s lemma). Let C be any category, X an object of C, and F : C → Sets a
contravariant functor.

1. There is a bijection

{Natural transformations from Maps(−, X ) to F}↔ F(X ).
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2. In particular, if Y is another object of C, then there is a bijection

{Natural transformations from Maps(−, X ) to Maps(−, Y )}↔Maps(X , Y ).

In particular, a natural isomorphism from Maps(−, X ) to Maps(−, Y ) gives an isomorphism
from X to Y .

Let us now prove Theorem 7. We will phrase the proof in the language that emphasizes
the functorial point of view. For brevity, we will denote the functor Maps(−, Y ) by hY . It is
often called the functor of points of Y (because when we put Spec R in the place of −, we get
the set of R-valued points of Y ).

Definition 10. Let F be a contravariant functor from Schemes to Sets. We say that F is a sheaf
(in the Zariski topology), if for every scheme X the following holds: for every open cover {Ui}
of X , and a collection of elements αi ∈ F(Ui) that agree on the overlaps Ui ∩ U j (that is, the
restriction of αi and α j to Ui ∩ U j are equal), there is a unique α ∈ F(X ) that restricts to αi on
Ui.

A functor of the form hY =Maps(−, Y ) clearly satisfies the sheaf condition. Indeed, a map
X → Y is uniquely specified by specifying it on an open cover, compatibly on the overlaps. So,
first and foremost, a representable functor must necessarily be a sheaf.

Secondly, a scheme is covered locally by affine schemes. We now extend the notion of an
open cover to a functor. To this end, we first generalize the construction of fiber products to
functors.

Definition 11. Let f : F → H and g : G → H be natural transformations between functors
from a category to Sets. Define the fiber product F ×H G by

F ×H G(S) = F(S)×H(S) G(S) = {(a, b) | a ∈ F(S), b ∈ G(s), and f (a) = g(b)}.

Notice that when F , G, and H are representable, then F ×H G is also representable, and
the representing scheme is the usual fiber product.

Definition 12. Let f : F → G be a map between functors from Schemes to Sets. We say that f
is an open immersion if for every scheme X and map hX → G, the fibered product hX ×G F has
the form hY for some Y and the map Y → X given by hX ×G F → hX is an open immersion.

We say that a collection of maps {Fi → G} is an open covering if each Fi → G is an open
immersion and for every field K , the map

⋃

Fi(K)→ G(K) is surjective.

Proposition 13. Let F be a contravariant functor from Schemes to Sets. Then F is representable
if and only if F is a sheaf in the Zariski topology and has an open covering {hX i

→ F}.

Proof sketch. Consider X i, j = X i ×F X j. Both X i, j → X i and X i, j → X j are open immersions. Let
their images be the open subschemes X j

i ⊂ X i and X j
i ⊂ X j. The identifications X i, j → X j

i and
X i, j → X i

j give an isomorphism φi, j : X i
j → X j

i . One checks that these gluing morphisms satisfy
the compatibility φi, j ◦φ j,k = φi,k on triple overlaps. So we can glue the X i along the open sets
X i

j using these isomorphisms and get a scheme X that represents the functor F .
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Proposition 14. The Grassmannian functor Subr,n is a sheaf in the Zariski topology.

Proof. Exercise.

Finally, we must produce an open cover of the Grassmannian functor. For a subset I ⊂
{1, . . . , n} of size r, define the functor SubI

r,n by

SubI
r,n(X ) = {Sub-bundles Fi ⊂ On

X such that the projection Fi → OI
X is an iso.}

Here On
X → OI

X is the projection onto the r coordinates given by I .

Proposition 15. The collection {SubI
r,n→ Subr,n}I is an open cover.

Proof. Let us first show that SubI
r,n → Subr,n is an open immersion. Consider a map hX →

Subr,n. By Yoneda’s lemma, such a map is equivalent to an element [F ⊂ On
X ] of SubI

r,n(X ). We
have to compute the fiber product H I = X ×Subr,n) SubI

r,n. A map from Y to this fiber product is
equivalent to an element of

hX (Y )×Subr,n(Y ) SubI
r,n(Y ),

namely to a map φ : Y → X and an element [FY ⊂ On
Y ] of SubI

r,n(Y ) such that the two elements
of Subr,n(Y ) obtained from φ and [FY ⊂ On

Y ] are the same. Since [FY ⊂ On
Y ] is an element

of SubI
r,n(Y ), the projection FY → OI

Y is an isomorphism. The element of Subr,n(Y ) obtained
from [FY ⊂ On

Y ] is just [FY ⊂ On
Y ]. The element of Subr,n(Y ) obtained from φ is the pullback

[φ∗F ⊂ On
Y ]. We can thus rephrase the fiber product as

H I(Y ) = {φ : Y → X | φ∗F → OI
Y is an isomorphism.}.

Consider the projection F → OI
X . The set x ∈ X such that F |x → OI

X |x is an isomorphism is
an open subset U I of X (why?). Then

H I(Y ) = {φ : Y → X | φ(Y )⊂ X }= {φ : Y → U I}.

Thus H I is represented by U I .
Showing that the collection SubI

r,n covers Subr,n is easy.

We finish the construction of the Grassmannian by showing that the subfunctors SubI
r,n are

representable.

Proposition 16. The subfunctors SubI
r,n are represented by Ar(n−r).

Proof. Let X be a scheme and an element [F ⊂ On
X of SubI

r,n(X ). Then, by definition, the
projection π: F → OI

X is an isomorphism. Let i : OI
X → On

X be the standard inclusion. Consider
the map φ = π−1− i : OI

X → On
X . Then its projection onto OI

X is zero, and hence it lands in OI c

X .
Thus, from X → SubI

r,n, we get a map between the two trivial vector bundles OI
X → OI c

X . Such
a map is given by an r × (n− r) matrix, and hence is the same as a map X → Ar(n−r).

5



Conversely, given a map X → Ar(n−r), we interpret it as an r × (n− r) matrix with entries
in OX , and hence as a map φ : OI

X → OI c

X . We let F = OI
X and construct an inclusion F → On

X =
OI

X ⊕OI c

X by
v 7→ (v,φ(v)).

The resulting [F ⊂ On
X ] gives a map X → SubI

r,n.
It is easy to verify that these two constructions are mutually inverse and give a natural

bijection between Maps(X ,Ar(n−r) and SubI
r,n(X ). Thus, SubI

r,n is represented by Ar(n−r .

Our proof of Theorem 7 produced a Zariski open cover of Gr(r, n). Any property of a
scheme that is local in the Zariski topology can be checked by checking it on the open cover.
For example, we see immediately that Gr(r, n) is smooth of dimension r(n− r). But how can
we get more information? It turns out that a lot of properties of the representing scheme can
be read off from the functor itself. We end by mentioning two examples, one global and one
local.

Let F be a functor represented by a scheme X of finite type. The following proposition
gives a criterion for X to be separated/proper in terms of F .

Proposition 17 (Valuative criteria of separatedness and properness). X is separated (resp.
proper) if and only if for every DVR R with fraction field K, the map F(Spec K) → F(Spec R)
induced by the inclusion Spec K → Spec R is an injection (resp. bijection).

The following proposition recovers the Zariski tangent space of X from the functor F .

Proposition 18. Let x ∈ F(k) be a k point of X . Define

Tx F = {ξ ∈ F(Spec k[ε]/ε2) | ξ0 ∈ F(k) is x},

where ξ0 is the image of ξ in F(k) under the map induced by the inclusion Spec k→ Spec k[ε]/ε2.
Then we have a bijection Tx F ∼= Tx X .

Exercises

1. Show that the following functors are representable and find the scheme that represents
them. The functors are described by their action on schemes; their action on morphisms
should be easy to infer.
(a) A(X ) = Γ(X , OX ) (the set of global regular functions)
(b) B(X ) = Γ(X , OX )∗ (the set of invertible global regular functions)
(c) Cn(X ) = { f ∈ Γ(X , OX ) | f n = 1}.

2. In Proposition 18, can you read off the vector space structure on Tx F from the functor?
3. Let V be a k vector space and x ∈ Gr(r, V ) be the k point corresponding to an r-

dimensional subspace S ⊂ V . Let Q = S/V . Using the functorial description of Gr(r, V )
and Proposition 18, construct an isomorphism

TxGr(r, V )∼= Hom(S,Q).
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4. Use Proposition 17 to prove that Gr(r, V ) is proper.
5. Let V be a vector bundle on a scheme X . Make sense of Gr(r, V ), the relative Grass-

mannian, as a functor. Then show that it is representable (with minimal work). The
result Gr(r, V ) should map to X and its fiber over x ∈ X should be the Grassmannian
Gr(r, V |x).

6. Construct the natural transformations between the functors of points of various Pn that
correspond to the Veronese and Segre maps.

7. Construct the natural transformation that corresponds to the Plücker embedding of a
Grassmannian.

8. Let n≥ 1 be a integer. Consider the functor

F(X ) = {S ⊂ P1× X | S→ X is finite and flat of degree n}.

Show that F is represented by Pn. What if we replace ‘flat’ by ‘etale’?
To get a sense of the functor, look at the ‘geometric points’ of the functor, namely the
elements of F(k), where k is an algebraically closed field.

Reference for this section [EH00, Chapter VI].
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